411 research outputs found
Gravitational instability and star formation in disk galaxies
We present a general star formation law where star formation rate depends
upon efficiency , timescale of star formation, gas component
of surface mass density and a real exponent . A given exponent
determines which however yields the corresponding star formation
rate. Current nominal Schmidt exponent for our model is .
Based on a gravitational instability parameter and another
dimensionless parameter , where =
pressure, = column density of molecular clouds, we suggest a
general equation for star formation rate which depends upon relative competence
of the two parameters for various physical circumstances. We find that
emerges to be a better parameter for star formation scenario than Toomre
Q-parameter. Star formation rate in the solar neighbourhood is found to be in
good agreement with values inferred from previous studies. Under closed box
approximation model, we obtain a relation between metallicity of gas and the
efficiency of star formation. Our model calculations of metallicity in the
solar neighbourhood agree with earlier estimates. We conclude that metallicity
dispersion for stars of same age may result due to a change in efficiency
through which different sample stars were processed. For no significant change
of metallicity with age, we suggest that all sample stars were born with almost
similar efficiency.Comment: 10 pages, 3 figures, submitted to MNRA
Single-shot dynamics of pulses from a gas-filled hollow fiber
We present measurements of the performance characteristics of few-cycle laser pulses generated by propagation through a gas-filled hollow fiber. The pulses going into the fiber and the compressed pulses after the fiber were simultaneously fully characterized shot-by-shot by using two kHz SPIDER setups and kHz pulse energy measurements. Output-pulse properties were found to be exceptionally stable and pulse characteristics relevant for non-linear applications like high-harmonic generation are discusse
Scalar perturbations from brane-world inflation
We investigate the scalar metric perturbations about a de Sitter brane
universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable
formalism, describing metric perturbations in a 5-dimensional longitudinal
gauge, with results in a Gaussian normal gauge. For a vacuum brane (with
constant brane tension) there is a continuum of normalizable Kaluza-Klein
modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with
m=\sqrt{2}H, satisfies the boundary conditions for two branes but is not
normalizable in the single-brane case. When matter is introduced (as a test
field) on the brane, this mode, together with the zero-mode and an infinite
ladder of discrete tachyonic modes, become normalizable. However, the boundary
condition requires the self-consistent 4-dimensional evolution of scalar field
perturbations on the brane and the dangerous growing modes are not excited.
These normalizable discrete modes introduce corrections at first-order to the
scalar field perturbations computed in a slow-roll expansion. On super-Hubble
scales, the correction is smaller than slow-roll corrections to the de Sitter
background. However on small scales the corrections can become significant.Comment: 15 page
Cosmic String Network Evolution in arbitrary Friedmann-Lemaitre models
We use the velocity-dependent one-scale model by Martins & Shellard to
investigate the evolution of a GUT long cosmic string network in arbitrary
Friedmann-Lemaitre models. Four representative models are used to show that in
general there is no scaling solution. The implications for structure formation
are briefly discussed.Comment: 8 pages, 4 postscript figures included, submitted to Phys. Rev.
Can Inflating Braneworlds be Stabilized?
We investigate scalar perturbations from inflation in braneworld cosmologies
with extra dimensions. For this we calculate scalar metric fluctuations around
five dimensional warped geometry with four dimensional de Sitter slices. The
background metric is determined self-consistently by the (arbitrary) bulk
scalar field potential, supplemented by the boundary conditions at both
orbifold branes. Assuming that the inflating branes are stabilized (by the
brane scalar field potentials), we estimate the lowest eigenvalue of the scalar
fluctuations - the radion mass. In the limit of flat branes, we reproduce well
known estimates of the positive radion mass for stabilized branes.
Surprisingly, however, we found that for de Sitter (inflating) branes the
square of the radion mass is typically negative, which leads to a strong
tachyonic instability. Thus, parameters of stabilized inflating braneworlds
must be constrained to avoid this tachyonic instability. Instability of
"stabilized" de Sitter branes is confirmed by the BraneCode numerical
calculations in the accompanying paper hep-th/0309001. If the model's
parameters are such that the radion mass is smaller than the Hubble parameter,
we encounter a new mechanism of generation of primordial scalar fluctuations,
which have a scale free spectrum and acceptable amplitude.Comment: 7 pages, RevTeX 4.
Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS
We present cosmological perturbation theory in neutrinos probe interacting
dark-energy models, and calculate cosmic microwave background anisotropies and
matter power spectrum. In these models, the evolution of the mass of neutrinos
is determined by the quintessence scalar field, which is responsible for the
cosmic acceleration today. We consider several types of scalar field potentials
and put constraints on the coupling parameter between neutrinos and dark
energy. Assuming the flatness of the universe, the constraint we can derive
from the current observation is at the 95 % confidence
level for the sum over three species of neutrinos. We also discuss on the
stability issue of the our model and on the impact of the scattering term in
Boltzmann equation from the mass-varying neutrinos.Comment: 26 pages Revtex, 11 figures, Add new contents and reference
Mass-Varying Neutrinos from a Variable Cosmological Constant
We consider, in a completely model-independent way, the transfer of energy
between the components of the dark energy sector consisting of the cosmological
constant (CC) and that of relic neutrinos. We show that such a cosmological
setup may promote neutrinos to mass-varying particles, thus resembling a
recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without
introducing any acceleronlike scalar fields. Although a formal similarity of
the FNW scenario with the variable CC one can be easily established, one
nevertheless finds different laws for neutrino mass variation in each scenario.
We show that as long as the neutrino number density dilutes canonically, only a
very slow variation of the neutrino mass is possible. For neutrino masses to
vary significantly (as in the FNW scenario), a considerable deviation from the
canonical dilution of the neutrino number density is also needed. We note that
the present `coincidence' between the dark energy density and the neutrino
energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA
On Brane World Cosmological Perturbations
We discuss the scalar cosmological perturbations in a 3-brane world with a 5D
bulk. We first show explicitly how the effective perturbed Einstein's equations
on the brane (involving the Weyl fluid) are encoded into Mukohyama's master
equation. We give the relation between Mukohyama's master variable and the
perturbations of the Weyl fluid, we also discuss the relation between the
former and the perturbations of matter and induced metric on the brane. We show
that one can obtain a boundary condition on the brane for the master equation
solely expressible in term of the master variable, in the case of a perfect
fluid with adiabatic perturbations on a Randall-Sundrum (RS) or
Dvali-Gabadadze-Porrati (DGP) brane. This provides an easy way to solve
numerically for the evolution of the perturbations as well as should shed light
on the various approximations done in the literature to deal with the Weyl
degrees of freedom.Comment: 36 pages, 1 figur
Cosmology and Brane Worlds: A Review
Cosmological consequences of the brane world scenario are reviewed in a
pedagogical manner. According to the brane world idea, the standard model
particles are confined on a hyper--surface (a so--called brane), which is
embedded in a higher--dimensional spacetime (the so--called bulk). We begin our
review with the simplest consistent brane world model: a single brane embedded
in a five--dimensional Anti-de Sitter space--time. Then we include a scalar
field in the bulk and discuss in detail the difference with the Anti-de Sitter
case. The geometry of the bulk space--time is also analysed in some depth.
Finally, we investigate the cosmology of a system with two branes and a bulk
scalar field. We comment on brane collisions and summarize some open problems
of brane world cosmology.Comment: 37 pages; invited topical review for Classical and Quantum Gravity;
to appea
Radion and Holographic Brane Gravity
The low energy effective theory for the Randall-Sundrum two brane system is
investigated with an emphasis on the role of the non-linear radion in the brane
world. The equations of motion in the bulk is solved using a low energy
expansion method. This allows us, through the junction conditions, to deduce
the effective equations of motion for the gravity on the brane. It is shown
that the gravity on the brane world is described by a quasi-scalar-tensor
theory with a specific coupling function omega(Psi) = 3 Psi / 2(1-Psi) on the
positive tension brane and omega(Phi) = -3 Phi / 2(1+Phi) on the negative
tension brane, where Psi and Phi are non-linear realizations of the radion on
the positive and negative tension branes, respectively. In contrast to the
usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two
kinds of matter, namely, the matters on both positive and negative tension
branes, with different effective gravitational coupling constants. In
particular, the radion disguised as the scalar fields Psi and Phi couples with
the sum of the traces of the energy momentum tensor on both branes. In the
course of the derivation, it has been revealed that the radion plays an
essential role to convert the non-local Einstein gravity with the generalized
dark radiation to the local quasi-scalar-tensor gravity. For completeness, we
also derive the effective action for our theory by substituting the bulk
solution into the original action. It is also shown that the
quasi-scalar-tensor gravity works as holograms at the low energy in the sense
that the bulk geometry can be reconstructed from the solution of the
quasi-scalar-tensor gravity.Comment: Revtex4, 18 pages, revised version, conclusions unchanged, references
adde
- âŠ