28 research outputs found

    Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy

    No full text
    Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI

    Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences.</p> <p>Methods</p> <p>We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed.</p> <p>Results</p> <p>Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased.</p> <p>Conclusion</p> <p>We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.</p

    Comparative Developmental Expression Profiling of Two C. elegans Isolates

    Get PDF
    Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism

    Sex-specific pathways in early cardiac response to pressure overload in mice

    Get PDF
    Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (α-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFβ2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF

    Ixazomib-lenalidomide-dexamethasone in routine clinical practice: effectiveness in relapsed/refractory multiple myeloma

    Get PDF
    Aim: To evaluate the effectiveness and safety of ixazomib-lenalidomide-dexamethasone (IRd) in relapsed/refractory multiple myeloma in routine clinical practice. Patients & methods: Patient-level data from the global, observational INSIGHT MM and the Czech Registry of Monoclonal Gammopathies were integrated and analyzed. Results: At data cut-off, 263 patients from 13 countries were included. Median time from diagnosis to start of IRd was 35.8 months; median duration of follow-up was 14.8 months. Overall response rate was 73%, median progression-free survival, 21.2 months and time-to-next therapy, 33.0 months. Ixazomib/lenalidomide dose reductions were required in 17%/36% of patients; 32%/30% of patients discontinued ixazomib/lenalidomide due to adverse events. Conclusion: The effectiveness and safety of IRd in routine clinical practice are comparable to those reported in TOURMALINE-MM1. Clinical trial registration: NCT02761187 (ClinicalTrials.gov

    Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in POLR3A, POLR3B, and POLR1C.

    Get PDF
    CONTEXT: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date. OBJECTIVE: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy. DESIGN: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015 and 2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated. SETTING: This was a multicenter retrospective study using information collected from 3 predominant centers. PATIENTS: A total of 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included. MAIN OUTCOME MEASURES: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and T4), and height and head circumference charts. RESULTS: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients. CONCLUSIONS: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically underinvestigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder

    Diffusion tensor imaging in the characterization of multiple system atrophy

    No full text
    Aaron Michael Rulseh,1&ndash;3 Jiri Keller,1,4 Jan Rusz,5,6 Michael Syka,1 Hana Brozova,6 Robert Rusina,6,7 Petra Havrankova,6 Katerina Zarubova,8 Hana Malikova,1 Robert Jech,6 Josef Vymazal1 1Department of Radiology, Na Homolce Hospital, Prague, Czech Republic; 2Department of Radiology, 1st Faculty of Medicine, General University Hospital, Charles University in Prague, Prague, Czech Republic; 3National Institute of Mental Health, Klecany, Czech Republic; 43rd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 5Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; 6Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 7Thomayer Hospital, Prague, Czech Republic; 8Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic Purpose: Multiple system atrophy (MSA) is a rare neurodegenerative disease that remains poorly understood, and the diagnosis of MSA continues to be challenging. We endeavored to improve the diagnostic process and understanding of in vivo characteristics of MSA by diffusion tensor imaging (DTI).Materials and methods: Twenty MSA subjects, ten parkinsonian dominant (MSA-P), ten cerebellar dominant (MSA-C), and 20 healthy volunteer subjects were recruited. Fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity maps were processed using tract-based spatial statistics. Diffusion data were additionally evaluated in the basal ganglia. A support vector machine was used to assess diagnostic utility, leave-one-out cross-validation in the evaluation of classification schemes, and receiver operating characteristic analyses to determine cutoff values.Results: We detected widespread changes in the brain white matter of MSA subjects; however, no group-wise differences were found between MSA-C and MSA-P subgroups. Altered DTI metrics in the putamen and middle cerebellar peduncles were associated with a positive parkinsonian and cerebellar phenotype, respectively. Concerning clinical applicability, we achieved high classification performance on mean diffusivity data in the combined bilateral putamen and middle cerebellar peduncle (accuracy 90.3%&plusmn;9%, sensitivity 86.5%&plusmn;11%, and specificity 99.3%&plusmn;4%).Conclusion: DTI in the middle cerebellar peduncle and putamen may be used in the diagnosis of MSA with a high degree of accuracy. Keywords: multiple system atrophy, diffusion tensor imaging, magnetic resonance imaging, neuroimaging, diagnostic imagin
    corecore