3,154 research outputs found
Exploring the continuum of social and financial returns: when does a nonprofit become a social enterprise?
Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source
The frequency of a 700mW monolithic non-planar Nd:YAG ring laser (NPRO)
depends with a large coupling coefficient (some MHz/mW) on the power of its
laser-diode pump source. Using this effect we demonstrate the frequency
stabilization of an NPRO to a frequency reference by feeding back to the
current of its pump diodes. We achieved an error point frequency noise smaller
than 1mHz/sqrt(Hz), and simultaneously a reduction of the power noise of the
NPRO by 10dB without an additional power stabilization feed-back system.Comment: accepted for publication by Optics Letter
Cation exchange at the secondary building units of metal–organic frameworks
Cation exchange is an emerging synthetic route for modifying the secondary building units (SBUs) of metal–organic frameworks (MOFs). This technique has been used extensively to enhance the properties of nanocrystals and molecules, but the extent of its applications for MOFs is still expanding. To harness cation exchange as a rational tool, we need to elucidate its governing factors. Not nearly enough experimental observations exist for drawing these conclusions, so we provide a conceptual framework for approaching this task. We address which SBUs undergo exchange, why certain ions replace others, how the framework influences the process, the role of the solvent, and current applications. Using these guidelines, certain trends emerge from the available data and missing experiments become obvious. If future studies follow this framework, then a more comprehensive body of observations will furnish a deeper understanding of cation exchange and inspire future applications.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0006937)3M CompanyAlfred P. Sloan FoundationResearch Corporation for Science AdvancementNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)MISTI (Hayashi Seed Fund
Quantification of the Individual Characteristics of the Human Dentition
The considerations for admissibility suggested by the Daubert trilogy challenge forensic experts to provide scientific support for opinion testimony. The defense bar has questioned the reliability of bitemark analysis. Under an award from the U. S. Department of Justice, via the Midwest Forensic Resource Center, a two-year feasibility study was undertaken to quantify six dental characteristics. Using two computer programs, the exemplars of 419 volunteers were digitally scanned, characteristics were measured, and frequency was calculated. The study demonstrates that there were outliers or rare dental characteristics in measurements. An analysis of the intra-observer and inter-observer consistency demonstrated a high degree of agreement. Expansion of the sample size through collaboration with other academic researchers will be necessary to be able to quantify the occurrence of these characteristics in the general population. The automated software application, Tom\u27s Toolbox, developed specifically for this research project, could also provide a template for precisely quantifying other pattern evidence
Cryptographic techniques used to provide integrity of digital content in long-term storage
The main objective of the project was to obtain advanced mathematical methods to guarantee the verification that a required level of data integrity is maintained in long-term storage. The secondary objective was to provide methods for the evaluation of data loss and recovery. Additionally, we have provided the following initial constraints for the problem: a limitation of additional storage space, a minimal threshold for desired level of data integrity and a defined probability of a single-bit corruption.
With regard to the main objective, the study group focused on the exploration methods based on hash values. It has been indicated that in the case of tight constraints, suggested by PWPW, it is not possible to provide any method based only on the hash values. This observation stems from the fact that the high probability of bit corruption leads to unacceptably large number of broken hashes, which in turn stands in contradiction with the limitation for additional storage space.
However, having loosened the initial constraints to some extent, the study group has proposed two methods that use only the hash values. The first method, based on a simple scheme of data subdivision in disjoint subsets, has been provided as a benchmark for other methods discussed in this report. The second method ("hypercube" method), introduced as a type of the wider class of clever-subdivision methods, is built on the concept of rewriting data-stream into a n-dimensional hypercube and calculating hash values for some particular (overlapping) sections of the cube.
We have obtained interesting results by combining hash value methods with error-correction techniques. The proposed framework, based on the BCH codes, appears to have promising properties, hence further research in this field is strongly recommended.
As a part of the report we have also presented features of secret sharing methods for the benefit of novel distributed data-storage scenarios. We have provided an overview of some interesting aspects of secret sharing techniques and several examples of possible applications
Dynamic Structural Flexibility of Fe-MOF-5 Evidenced by ⁵⁷Fe Mössbauer Spectroscopy
Temperature-dependent ⁵⁷Fe Mössbauer spectra were collected on Fe[subscript x]Zn[subscript 4−x](1,4-benzenedicarboxylate)₃ (Fe-MOF-5). When measured under an Ar atmosphere, the data at higher temperatures reveal thermal population of the lowest-lying electronic excited state, as expected for low symmetry tetrahedral ferrous ions. In the presence of N₂, however, the temperature dependence becomes exaggerated and the spectra cannot be fitted to a single species. A fluctuating electric field gradient at the Fe nuclei best explains these data and suggests dynamic structural distortions induced by weak interactions with N₂. This direct evidence of dynamic behaviour at MOF open metal sites is relevant for the use of MOF SBUs in catalysis, gas separation, and other applications that invoke similar phenomena
Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst
Current heterogeneous catalysts lack the fine steric and electronic tuning required for catalyzing the selective dimerization of ethylene to 1-butene, which remains one of the largest industrial processes still catalyzed by homogeneous catalysts. Here, we report that a metal–organic framework catalyzes ethylene dimerization with a combination of activity and selectivity for 1-butene that is premier among heterogeneous catalysts. The capacity for mild cation exchange in the material MFU-4l (MFU-4l = Zn[subscript 5]Cl[subscript 4](BTDD)[subscript 3], H[subscript 2]BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin) was leveraged to create a well-defined and site-isolated Ni(II) active site bearing close structural homology to molecular tris-pyrazolylborate complexes. In the presence of ethylene and methylaluminoxane, the material consumes ethylene at a rate of 41,500 mol per mole of Ni per hour with a selectivity for 1-butene of up to 96.2%, exceeding the selectivity reported for the current industrial dimerization process.Saudi AramcoAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship3M CompanyResearch Corporation for Science Advancement. Cottrell Scholars ProgramAlfred P. Sloan Foundatio
Extracellular Acidification Inhibits the ROS-Dependent Formation of Neutrophil Extracellular Traps
- …
