6,981 research outputs found

    The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings

    Get PDF
    The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance of a number of existing facilities before and after real or virtual implementation of monitoring-based control improvement measures

    Note on paramoudra-like carbonate concretions in the Urenui Formation, North Taranaki: possible plumbing system for a Late Miocene methane seep field

    Get PDF
    A reconnaissance study of calcitic and dolomitic tubular concretions in upper slope mudstone of the Late Miocene Urenui Formation exposed along the north Taranaki coastline indicates that they have a complex diagenetic history involving different phases of carbonate cementation and likely hydrofracturing associated with build up of fluid/gas pressures. The concretions resemble classical paramoudra in the European chalk, but are not siliceous and do not have a trace fossil origin. Stable oxygen and carbon isotope data suggest that the micritic carbonate cements in the Urenui paramoudra were probably sourced primarily from ascending methane fluid/gases, and that they precipitated entirely within the host mudstone below the seafloor. We suggest the paramoudra may mark the subsurface plumbing networks of a Late Miocene cold seep system, in which case they have relevance to the evolution and migration of hydrocarbons in Taranaki Basin, at this site perhaps focussed along the Taranaki Fault. The presence of dislodged and mass-emplaced paramoudra in the axial conglomerate of channels within the Urenui mudstone suggests there could be a connection between the loci of seep field development and slope failure and canyon cutting on the Late Miocene Taranaki margin

    Unconditionally verifiable blind computation

    Get PDF
    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output and computation remain private. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol, or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. The authors, together with Broadbent, previously proposed a universal and unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. In this paper we extend that protocol with new functionality allowing blind computational basis measurements, which we use to construct a new verifiable BQC protocol based on a new class of resource states. We rigorously prove that the probability of failing to detect an incorrect output is exponentially small in a security parameter, while resource overhead remains polynomial in this parameter. The new resource state allows entangling gates to be performed between arbitrary pairs of logical qubits with only constant overhead. This is a significant improvement on the original scheme, which required that all computations to be performed must first be put into a nearest neighbour form, incurring linear overhead in the number of qubits. Such an improvement has important consequences for efficiency and fault-tolerance thresholds.Comment: 46 pages, 10 figures. Additional protocol added which allows arbitrary circuits to be verified with polynomial securit

    A deep, high resolution survey of the low frequency radio sky

    Full text link
    We report on the first wide-field, very long baseline interferometry (VLBI) survey at 90 cm. The survey area consists of two overlapping 28 deg^2 fields centred on the quasar J0226+3421 and the gravitational lens B0218+357. A total of 618 sources were targeted in these fields, based on identifications from Westerbork Northern Sky Survey (WENSS) data. Of these sources, 272 had flux densities that, if unresolved, would fall above the sensitivity limit of the VLBI observations. A total of 27 sources were detected as far as 2 arcdegrees from the phase centre. The results of the survey suggest that at least 10% of moderately faint (S~100 mJy) sources found at 90 cm contain compact components smaller than ~0.1 to 0.3 arcsec and stronger than 10% of their total flux densities. A ~90 mJy source was detected in the VLBI data that was not seen in the WENSS and NRAO VLA Sky Survey (NVSS) data and may be a transient or highly variable source that has been serendipitously detected. This survey is the first systematic (and non-biased), deep, high-resolution survey of the low-frequency radio sky. It is also the widest field of view VLBI survey with a single pointing to date, exceeding the total survey area of previous higher frequency surveys by two orders of magnitude. These initial results suggest that new low frequency telescopes, such as LOFAR, should detect many compact radio sources and that plans to extend these arrays to baselines of several thousand kilometres are warranted.Comment: Accepted by The Astrophysical Journal. 39 pages, 4 figure

    Renormalization group aspects of the local composite operator method

    Get PDF
    We review the current status of the application of the local composite operator technique to the condensation of dimension two operators in quantum chromodynamics (QCD). We pay particular attention to the renormalization group aspects of the formalism and the renormalization of QCD in various gauges.Comment: 13 latex pages, talk presented at RG0

    Magnetic stress as a driving force of structural distortions: the case of CrN

    Full text link
    We show that the observed transition from rocksalt to orthorhombic Pnma_{nma} symmetry in CrN can be understood in terms of stress anisotropy. Using local spin density functional theory, we find that the imbalance between stress stored in spin-paired and spin-unpaired Cr nearest neighbors causes the rocksalt structure to be unstable against distortions and justifies the observed antiferromagnetic ordering. This stress has a purely magnetic origin, and may be important in any system where the coupling between spin ordering and structure is strong.Comment: 4 pages (two columns) 4 figure

    Lamb Shift of Laser-Dressed Atomic States

    Get PDF
    We discuss radiative corrections to an atomic two-level system subject to an intense driving laser field. It is shown that the Lamb shift of the laser-dressed states, which are the natural state basis of the combined atom-laser system, cannot be explained in terms of the Lamb shift received by the atomic bare states which is usually observed in spectroscopic experiments. In the final part, we propose an experimental scheme to measure these corrections based on the incoherent resonance fluorescence spectrum of the driven atom.Comment: 4 pages, 1 figure, submitted for publicatio

    Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007

    Get PDF
    Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HO_x (=OH+HO_2) production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO_2 ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NO_y) indicates that HONO accounted for only ~3% of total NO_y. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day^(−1)) existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NO_y cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS) over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HO_x budget was calculated to be relatively small (6%) compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HO_x production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this kind of environment are needed to test this hypothesis and to improve our understanding of atmospheric oxidation and nitrogen budget

    Brokered Graph State Quantum Computing

    Full text link
    We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.Comment: 5 pages, 3 figure
    corecore