2,041 research outputs found

    Video information retrieval using objects and ostensive relevance feedback

    Get PDF
    In this paper, we present a brief overview of current approaches to video information retrieval (IR) and we highlight its limitations and drawbacks in terms of satisfying user needs. We then describe a method of incorporating object-based relevance feedback into video IR which we believe opens up new possibilities for helping users find information in video archives. Following this we describe our own work on shot retrieval from video archives which uses object detection, object-based relevance feedback and a variation of relevance feedback called ostensive RF which is particularly appropriate for this type of retrieval

    Video retrieval using dialogue, keyframe similarity and video objects

    Get PDF
    There are several different approaches to video retrieval which vary in sophistication, and in the level of their deployment. Some are well-known, others are not yet within our reach for any kind of large volumes of video. In particular, object-based video retrieval, where an object from within a video is used for retrieval, is often particularly desirable from a searcher's perspective. In this paper we introduce Fischlar-Simpsons, a system providing retrieval from an archive of video using any combination of text searching, keyframe image matching, shot-level browsing, as well as object-based retrieval. The system is driven by user feedback and interaction rather than having the conventional search/browse/search metaphor and the purpose of the system is to explore how users can use detected objects in a shot as part of a retrieval task

    Constrained Optimization for a Subset of the Gaussian Parsimonious Clustering Models

    Full text link
    The expectation-maximization (EM) algorithm is an iterative method for finding maximum likelihood estimates when data are incomplete or are treated as being incomplete. The EM algorithm and its variants are commonly used for parameter estimation in applications of mixture models for clustering and classification. This despite the fact that even the Gaussian mixture model likelihood surface contains many local maxima and is singularity riddled. Previous work has focused on circumventing this problem by constraining the smallest eigenvalue of the component covariance matrices. In this paper, we consider constraining the smallest eigenvalue, the largest eigenvalue, and both the smallest and largest within the family setting. Specifically, a subset of the GPCM family is considered for model-based clustering, where we use a re-parameterized version of the famous eigenvalue decomposition of the component covariance matrices. Our approach is illustrated using various experiments with simulated and real data

    Use of the FĂ­schlĂĄr video library system

    Get PDF
    Físchlár is a shared video retrieval system that lets users record, browse and watch television programmes using their web browser. In Físchlár, the programmes users can watch and record are organised by channel, by theme and by personal recommendation as provided by the ChangingWorlds’ ClixSmart personalisation engine. Our initial results from user trials illustrate the usage of each of these features

    Video retrieval using objects and ostensive relevance feedback

    Get PDF
    The thesis discusses and evaluates a model of video information retrieval that incorporates a variation of Relevance Feedback and facilitates object-based interaction and ranking. Video and image retrieval systems suffer from poor retrieval performance compared to text-based information retrieval systems and this is mainly due to the poor discrimination power of visual features that provide the search index. Relevance Feedback is an iterative approach where the user provides the system with relevant and non-relevant judgements of the results and the system re-ranks the results based on the user judgements. Relevance feedback for video retrieval can help overcome the poor discrimination power of the features with the user essentially pointing the system in the right direction based on their judgements. The ostensive relevance feedback approach discussed in this work weights user judgements based on the o r d e r in which they are made with newer judgements weighted higher than older judgements. The main aim of the thesis is to explore the benefit of ostensive relevance feedback for video retrieval with a secondary aim of exploring the effectiveness of object retrieval. A user experiment has been developed in which three video retrieval system variants are evaluated on a corpus of video content. The first system applies standard relevance feedback weighting while the second and third apply ostensive relevance feedback with variations in the decay weight. In order to evaluate effective object retrieval, animated video content provides the corpus content for the evaluation experiment as animated content offers the highest performance for object detection and extraction
    • 

    corecore