103,379 research outputs found

    Condensers and or evaporators in convective and radiative environments

    Get PDF
    Condensers and/or evaporators in convective and radiative environment

    Nuclear Saturation with in-Medium Meson Exchange Interactions

    Full text link
    We show that the assumption of dropping meson masses together with conventional many-body effects, implemented in the relativistic Dirac-Brueckner formalism, explains nuclear saturation. We use a microscopic model for correlated 2π2\pi exchange and include the standard many-body effects on the in-medium pion propagation, which initially increase the attractive nucleon-nucleon (NNNN) potential with density. For the vector meson exchanges in both the ππ\pi\pi and NNNN sector, we assume Brown-Rho scaling which---in concert with `chiral' ππ\pi\pi contact interactions---reduces the attraction at higher densities.Comment: 5 pages REVTeX, 2 eps-figures included, submitted to Phys. Rev. Let

    Relationship between Allan variances and Kalman Filter parameters

    Get PDF
    A relationship was constructed between the Allan variance parameters (H sub z, H sub 1, H sub 0, H sub -1 and H sub -2) and a Kalman Filter model that would be used to estimate and predict clock phase, frequency and frequency drift. To start with the meaning of those Allan Variance parameters and how they are arrived at for a given frequency source is reviewed. Although a subset of these parameters is arrived at by measuring phase as a function of time rather than as a spectral density, they all represent phase noise spectral density coefficients, though not necessarily that of a rational spectral density. The phase noise spectral density is then transformed into a time domain covariance model which can then be used to derive the Kalman Filter model parameters. Simulation results of that covariance model are presented and compared to clock uncertainties predicted by Allan variance parameters. A two state Kalman Filter model is then derived and the significance of each state is explained

    CO observations of the expanding envelope of IRC plus 10216

    Get PDF
    High-sensitivity emission profiles were observed for the transition of C12O16 and C13O16 towards IRC + or - 10216. It appears that the spherically symmetric uniform mass-outflow model proposed by Morris is necessary to describe the line profiles. The outflow appears to be slightly accelerated, having a velocity of 15 km/sec at the edges of the CO cloud, compared with 12 km/sec for the more centrally confined molecules

    Use of aerial thermography in Canadian energy conservation programs

    Get PDF
    Recent developments in the use of aerial thermography in energy conservation programs within Canada were summarized. Following a brief review of studies conducted during the last three years, methodologies of data acquisition, processing, analysis and interpretation was discussed. Examples of results from an industrial oriented project were presented and recommendations for future basic work were outlined

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    Critical Team Composition Issues for Long-Distance and Long-Duration Space Exploration: A Literature Review, an Operational Assessment, and Recommendations for Practice and Research

    Get PDF
    Prevailing team effectiveness models suggest that teams are best positioned for success when certain enabling conditions are in place (Hackman, 1987; Hackman, 2012; Mathieu, Maynard, Rapp, & Gilson, 2008; Wageman, Hackman, & Lehman, 2005). Team composition, or the configuration of member attributes, is an enabling structure key to fostering competent teamwork (Hackman, 2002; Wageman et al., 2005). A vast body of research supports the importance of team composition in team design (Bell, 2007). For example, team composition is empirically linked to outcomes such as cooperation (Eby & Dobbins, 1997), social integration (Harrison, Price, Gavin, & Florey, 2002), shared cognition (Fisher, Bell, Dierdorff, & Belohlav, 2012), information sharing (Randall, Resick, & DeChurch, 2011), adaptability (LePine, 2005), and team performance (e.g., Bell, 2007). As such, NASA has identified team composition as a potentially powerful means for mitigating the risk of performance decrements due to inadequate crew cooperation, coordination, communication, and psychosocial adaptation in future space exploration missions. Much of what is known about effective team composition is drawn from research conducted in conventional workplaces (e.g., corporate offices, production plants). Quantitative reviews of the team composition literature (e.g., Bell, 2007; Bell, Villado, Lukasik, Belau, & Briggs, 2011) are based primarily on traditional teams. Less is known about how composition affects teams operating in extreme environments such as those that will be experienced by crews of future space exploration missions. For example, long-distance and long-duration space exploration (LDSE) crews are expected to live and work in isolated and confined environments (ICEs) for up to 30 months. Crews will also experience communication time delays from mission control, which will require crews to work more autonomously (see Appendix A for more detailed information regarding the LDSE context). Given the unique context within which LDSE crews will operate, NASA identified both a gap in knowledge related to the effective composition of autonomous, LDSE crews, and the need to identify psychological and psychosocial factors, measures, and combinations thereof that can be used to compose highly effective crews (Team Gap 8). As an initial step to address Team Gap 8, we conducted a focused literature review and operational assessment related to team composition issues for LDSE. The objectives of our research were to: (1) identify critical team composition issues and their effects on team functioning in LDSE-analogous environments with a focus on key composition factors that will most likely have the strongest influence on team performance and well-being, and 1 Astronaut diary entry in regards to group interaction aboard the ISS (p.22; Stuster, 2010) 2 (2) identify and evaluate methods used to compose teams with a focus on methods used in analogous environments. The remainder of the report includes the following components: (a) literature review methodology, (b) review of team composition theory and research, (c) methods for composing teams, (d) operational assessment results, and (e) recommendations

    Nonlinear bending-torsional vibration and stability of rotating, pretwisted, preconed blades including Coriolis effects

    Get PDF
    The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined

    White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    Get PDF
    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA
    corecore