1,439 research outputs found
Mass inflation in f(R) gravity: A conjecture on the resolution of the mass inflation singularity
We study gravitational collapse of a charged black hole in f(R) gravity using
double-null formalism. We require cosmological stability to f(R) models; we
used the Starobinsky model and the R + (1/2)cR^2 model. Charged black holes in
f(R) gravity can have a new type of singularity due to higher curvature
corrections, the so-called f(R)-induced singularity, although it is highly
model-dependent. As the advanced time increases, the internal structure will
approach the Cauchy horizon, which may not be an inner apparent horizon. There
is mass inflation as one approaches the Cauchy horizon and hence the Cauchy
horizon may be a curvature singularity with nonzero area. However, the Ricci
scalar is finite for an out-going null observer. This can be integrated as
follows: Cosmologically stable higher curvature corrections of the Ricci scalar
made it bounded even in the presence of mass inflation. Finally, we conjecture
that if there is a general action including general higher curvature
corrections with cosmological stability, then the corrections can make all
curvature components finite even in the presence of mass inflation. This might
help us to resolve the problem of inner horizon instability of regular black
hole models.Comment: 31 pages, 15 figure
What does it mean for half of an empty cavity to be full?
21 págs.; 8 figs.; 2 app.; PACS numbers: 03.67.Bg, 03.70.+k, 11.10.-z© 2015 American Physical Society. It is well known that the vacuum state of a quantum field is spatially entangled. This is true in both free and confined spaces, for example, in an optical cavity. The obvious consequence of this, however, is surprising and intuitively challenging: namely, that in a mathematical sense, half of an empty cavity is not empty. Formally this is clear, but what does this physically mean in terms of, say, measurements that can actually be made? In this paper we utilize a local quantization procedure along with the tools of Gaussian quantum mechanics to characterize the particle content in the reduced state of a subregion within a cavity and expose the spatial profile of its entanglement with the opposite region. We then go on to discuss a thought experiment in which a mirror is very quickly introduced between the regions. In so doing we expose a simple and physically concrete answer to the above question: the real excitations created by slamming down the mirror are mathematically equivalent to those previously attributed to the reduced states of the subregions. Performing such an experiment in the laboratory may be an excellent method of verifying vacuum entanglement, and we conclude by discussing different possibilities of achieving this aim.This work is supported by Spanish MICINN
Projects FIS2011-29287 and CAM research consortium
QUITEMAD+ S2013/ICE-2801. E. B. acknowledges support
by the Michael Smith Foreign Study Supplements
Program, M. del R. was supported by a CSIC JAEPREDOC
grant and H. Westman was supported by the
JAE-DOC 2011 CSIC & ESF program. A. D. was supported
by the National Science Center, Sonata BIS Grant
No. 2012/07/E/ST2/01402.Peer Reviewe
Parity Mixed Doublets in A = 36 Nuclei
The -circular polarizations () and asymmetries
() of the parity forbidden M1 + E2 -decays: MeV) and MeV)
MeV) are investigated theoretically. We use the recently proposed
Warburton-Becker-Brown shell-model interaction. For the weak forces we discuss
comparatively different weak interaction models based on different assumptions
for evaluating the weak meson-hadron coupling constants. The results determine
a range of values from which we find the most probable values:
= for and = for .Comment: RevTeX, 17 pages; to appear in Phys. Rev.
Hyperparathyroidism, platelet intracellular free calcium and hypertension in chronic renal failure
Hyperparathyroidism, platelet intracellular free calcium and hypertension in chronic renal failure. To investigate possible relationships between hyperparathyroidism, alterations in intracellular free calcium concentration ([Ca2+]i and hypertension in chronic renal failure, serum concentrations of intact parathyroid hormone (PTH) were measured by two-site immunometric assay, and platelet ([Ca2+]i) was assessed using the fluorescent indicator fura-2. Thirty-six patients with chronic renal failure were studied, 10 with normal serum PTH concentrations (mean 8.0 ± 0.6 pmol/liter), 17 with elevated serum PTH (35.0 ± 7.2 pmol/liter) and 9 patients with elevated PTH (36.2 ±5.9 pmol/liter) who were receiving nifedipine. Platelet [Ca2+]i was increased in patients with elevated PTH, compared with those in whom PTH was normal (138 ± 16 vs. 83 ± 7 nmol/liter, P < 0.01). A linear relation was observed between serum PTH and platelet [Ca2+]i in these patients (r = 0.818, P < 0.001). In contrast, platelet [Ca2+]i was not elevated (84 ± 9 nmol/liter) in the patients with elevated PTH who were receiving nifedipine. A linear relation was also present between both serum PTH (r = 0.616, P < 0.001) and platelet [Ca2+]i (r = 0.576, P < 0.005) and mean blood pressure. Nine patients with hyperparathyroidism were restudied after treatment with the vitamin D analogue alfacalcidol. This resulted in significant decreases in serum PTH (P < 0.01), platelet [Ca2+]i (P < 0.02), and mean blood pressure (P < 0.05). These studies indicate that [Ca2+]i may be increased early in renal failure, and that this increase occurs in association with both hyperparathyroidism and hypertension. Furthermore, treatment of hyperparathyroidism with alfacalcidol may result in reductions in both [Ca2+]i and blood pressure. The lack of elevation in [Ca2+]i in nifedipine-treated patients with hyperparathyroidism suggests that, in uremia, increases in cytosolic calcium induced by PTH or other factors may be mediated in part by dihydropyridine-sensitive mechanisms
New calculations of the PNC Matrix Element for the 0 doublet in N
A new calculation of the predominantly isoscalar PNC matrix element between
the (E 8.7 MeV) states in N has
been carried out in a (0+1+2+3+4) model space with the
Warburton-Brown interaction. The magnitude of the PNC matrix element of 0.22 to
0.34 eV obtained with the DDH PNC interaction is substantially suppressed
compared with previous calculations in smaller model spaces but shows agreement
with the preliminary Seattle experimental data. The calculated sign is opposite
to that obtained experimentally, and the implications of this are discussed.Comment: REVTEX, 28 page
New solutions in 3D gravity
We study gravitational theory in 1+2 spacetime dimensions which is determined
by the Lagrangian constructed as a sum of the Einstein-Hilbert term plus the
two (translational and rotational) gravitational Chern-Simons terms. When the
corresponding coupling constants vanish, we are left with the purely Einstein
theory of gravity. We obtain new exact solutions for the gravitational field
equations with the nontrivial material sources. Special attention is paid to
plane-fronted gravitational waves (in case of the Maxwell field source) and to
the circularly symmetric as well as the anisotropic cosmological solutions
which arise for the ideal fluid matter source.Comment: Revtex, 21 pages, no figure
Non-Linear Vibrations in Nuclei
We have perfomed Time Dependant Hartree-Fock (TDHF) calculations on the non
linear response of nuclei. We have shown that quadrupole (and dipole) motion
produces monopole (and quadrupole) oscillations in all atomic nuclei. We have
shown that these findings can be interpreted as a large coupling between one
and two phonon states leading to large anharmonicities.Comment: 4 pages, 3 figure
Quantum-critical pairing with varying exponents
We analyse the onset temperature T_p for the pairing in cuprate
superconductors at small doping, when tendency towards antiferromagnetism is
strong. We consider the model of Moon and Sachdev (MS), which assumes that
electron and hole pockets survive in a paramagnetic phase. Within this model,
the pairing between fermions is mediated by a gauge boson, whose propagator
remains massless in a paramagnet. We relate the MS model to a generic
\gamma-model of quantum-critical pairing with the pairing kernel \lambda
(\Omega) \propto 1/\Omega^{\gamma}. We show that, over some range of
parameters, the MS model is equivalent to the \gamma-model with \gamma =1/3
(\lambda (\Omega) \propto \Omega^{-1/3}). We find, however, that the parameter
range where this analogy works is bounded on both ends. At larger deviations
from a magnetic phase, the MS model becomes equivalent to the \gamma-model with
varying \gamma >1/3, whose value depends on the distance to a magnetic
transition and approaches \gamma =1 deep in a paramagnetic phase. Very near the
transition, the MS model becomes equivalent to the \gamma-model with varying
\gamma <1/3. Right at the magnetic QCP, the MS model is equivalent to the
\gamma-model with \gamma =0+ (\lambda (\Omega) \propto \log \Omega), which is
the model for color superconductivity. Using this analogy, we verified the
formula for T_c derived for color superconductivity.Comment: 10 pages, 8 figures, submitted to JLTP for a focused issue on Quantum
Phase Transition
Integrin activation - the importance of a positive feedback
Integrins mediate cell adhesion and are essential receptors for the
development and functioning of multicellular organisms. Integrin activation is
known to require both ligand and talin binding and to correlate with cluster
formation but the activation mechanism and precise roles of these processes are
not yet resolved. Here mathematical modeling, with known experimental
parameters, is used to show that the binding of a stabilizing factor, such as
talin, is alone insufficient to enable ligand-dependent integrin activation for
all observed conditions; an additional positive feedback is required.Comment: in press in Bulletin of Mathematical Biolog
- …