27,331 research outputs found

    Water temperature dynamics in High Arctic river basins

    No full text
    Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3-3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7-2.3 °C km ). Non-glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9-5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p<0.01) with incoming short-wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin-specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high-latitude river systems

    Evolution of a stream ecosystem in recently deglaciated terrain

    No full text
    Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was,<50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats

    Experimental evidence that predator range expansion modifies alpine stream community structure

    Get PDF
    Climate change is projected to facilitate altitudinal range expansions of ‘lowland’ taxa, creating novel species interactions. However, how range shifts will alter biotic interactions and community structure in alpine streams is not well understood. In the Pyrénées, climate-induced physicochemical habitat change is hypothesized to facilitate the colonization of high-altitude streams by Perla grandis, a carnivorous stonefly. A field-based experiment was conducted in mesocosm channels beside a hillslope spring (2000 m asl) in the Taillon-Gabiétous catchment, French Pyrénées. The influence of P. grandis predation on community structure, feeding trait composition, body-size spectrum, and algal chlorophyll a concentration was examined. Gut contents were analyzed and used to identify consumed prey. Total invertebrate density was not significantly reduced by P. grandis, but Baetis spp. densities were depressed in the treatment channels through a combination of direct consumption and predator avoidance (emigration/drift). However, despite fewer grazers in the predator treatment channels, the magnitude of the trophic cascade effect on basal resources (measured as chlorophyll a density) was comparable between treatment and control channels. The results of this experiment suggest that size/species-specific predation, intraguild predation, and interference competition are the likely mechanisms that altered the body-size spectrum in treatment channels. In synergy with climate-driven physicochemical habitat change, the extinction risk of some range-restricted taxa (prey and other predators) could be increased where P. grandis colonization occurs. Hence, conservation efforts are required to ensure that additional anthropogenic stressors (e.g., nutrient enrichment, cattle trampling, hydropower development, ski runs, and tourism) are limited to minimize further pressures on these unique and sensitive habitats

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    Pulmonary vasoconstrictor action of KCNQ potassium channel blockers

    Get PDF
    KCNQ channels have been widely studied in the nervous system, heart and inner ear, where they have important physiological functions. Recent reports indicate that KCNQ channels may also be expressed in portal vein where they are suggested to influence spontaneous contractile activity. The biophysical properties of K+ currents mediated by KCNQ channels resemble a current underlying the resting K+ conductance and resting potential of pulmonary artery smooth muscle cells. We therefore investigated a possible role of KCNQ channels in regulating the function of pulmonary arteries by determining the ability of the selective KCNQ channel blockers, linopirdine and XE991, to promote pulmonary vasoconstriction. Linopirdine and XE991 both contracted rat and mouse pulmonary arteries but had little effect on mesenteric arteries. In each case the maximum contraction was almost as large as the response to 50 mM K+. Linopirdine had an EC50 of around 1 μM and XE991 was almost 10-fold more potent. Neither removal of the endothelium nor exposure to phentolamine or α,β-methylene ATP, to block α1-adrenoceptors or P2X receptors, respectively, affected the contraction. Contraction was abolished in Ca2+-free solution and in the presence of 1 μM nifedipine or 10 μM levcromakalim

    The action for higher spin black holes in three dimensions

    Full text link
    In the context of (2+1)--dimensional Chern-Simons SL(N,R)\times SL(N,R) gauge fields and spin N black holes we compute the on-shell action and show that it generates sensible and consistent thermodynamics. In particular, the Chern-Simons action solves the integrability conditions recently considered in the literature.Comment: Paper shortened and generalized. Main results unchanged. 25 pages, Latex, no figure

    Perceptions of psychological momentum of elite soccer players

    Get PDF
    The purpose of this research was to investigate elite soccer players’ perceptions and experiences of psychological momentum (PM) using a mixed methodological approach. Specifically, by comparing responses, the study aimed to provide coaches with a more appropriate method for collecting PM data. Interviews and focus groups were conducted with 10 English Academy, elite male soccer players. In addition, 75 professional male soccer players completed a 49-item measure about their experiences of PM. Interviews and focus groups were manually analysed using a combination of inductive and deductive approaches with Chi-square tests used to assess differences between responses to the PM measure. The majority of questionnaire responses were supported by themes highlighted by players interviewed. Scoring and conceding goals were the most frequently reported match variables associated with positive and negative PM, respectively. In addition, ‘feeling confident’, ‘having a positive attitude’ and ‘being cohesive as a team’ were important aspects of positive PM. A ‘perceived lack of ability’ and ‘feeling anxious’ were the most frequently reported experiences of negative PM. The similarity of results from both methods support the measure as a useful tool for coaches to collect data pertaining to players’ experiences and perceptions of PM. Overall, findings suggest that PM is a complex (dynamic) process whereby triggers, characteristics, and consequences can hardly be separated. By understanding players’ experiences and perceptions of PM, coaches may incorporate specific training methods to help players maximise positive PM, reduce negative PM as well as develop strategies to optimise PM

    Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    Get PDF
    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust
    corecore