4,519 research outputs found
CARINA: nutrient data in the Atlantic Ocean
Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic Mediterranean Seas, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these 84 cruises report nitrate values, 79 silicate, and 78 phosphate. Here we present details of the secondary QC for nutrients for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the nutrient values for 43 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004). Based on our analysis we estimate the internal accuracy of the CARINA-ATL nutrient data to be: nitrate 1.5%; phosphate 2.6%; silicate 3.1%. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation
Introduction to the Workshop on Ecological Effects of Hydrocarbon Spills in Alaska
With continued development of Arctic petroleum reserves there has been growing interest in the fate and effects of petroleum hydrocarbons that may be spilled in northern environments. ... There have been a number of studies made during the past decade on the ecological effects of hydrocarbon spillage in the Arctic areas .... [This article offers an overview of some of the research undertaken on this subject since 1970.
A comparison of Noether charge and Euclidean methods for Computing the Entropy of Stationary Black Holes
The entropy of stationary black holes has recently been calculated by a
number of different approaches. Here we compare the Noether charge approach
(defined for any diffeomorphism invariant Lagrangian theory) with various
Euclidean methods, specifically, (i) the microcanonical ensemble approach of
Brown and York, (ii) the closely related approach of Ba\~nados, Teitelboim, and
Zanelli which ultimately expresses black hole entropy in terms of the Hilbert
action surface term, (iii) another formula of Ba\~nados, Teitelboim and Zanelli
(also used by Susskind and Uglum) which views black hole entropy as conjugate
to a conical deficit angle, and (iv) the pair creation approach of Garfinkle,
Giddings, and Strominger. All of these approaches have a more restrictive
domain of applicability than the Noether charge approach. Specifically,
approaches (i) and (ii) appear to be restricted to a class of theories
satisfying certain properties listed in section 2; approach (iii) appears to
require the Lagrangian density to be linear in the curvature; and approach (iv)
requires the existence of suitable instanton solutions. However, we show that
within their domains of applicability, all of these approaches yield results in
agreement with the Noether charge approach. In the course of our analysis, we
generalize the definition of Brown and York's quasilocal energy to a much more
general class of diffeomorphism invariant, Lagrangian theories of gravity. In
an appendix, we show that in an arbitrary diffeomorphism invariant theory of
gravity, the ``volume term" in the ``off-shell" Hamiltonian associated with a
time evolution vector field always can be expressed as the spatial
integral of , where are the constraints
associated with the diffeomorphism invariance.Comment: 29 pages (double-spaced) late
Black Hole Entropy is Noether Charge
We consider a general, classical theory of gravity in dimensions, arising
from a diffeomorphism invariant Lagrangian. In any such theory, to each vector
field, , on spacetime one can associate a local symmetry and, hence, a
Noether current -form, , and (for solutions to the field
equations) a Noether charge -form, . Assuming only that the
theory admits stationary black hole solutions with a bifurcate Killing horizon,
and that the canonical mass and angular momentum of solutions are well defined
at infinity, we show that the first law of black hole mechanics always holds
for perturbations to nearby stationary black hole solutions. The quantity
playing the role of black hole entropy in this formula is simply times
the integral over of the Noether charge -form associated with
the horizon Killing field, normalized so as to have unit surface gravity.
Furthermore, we show that this black hole entropy always is given by a local
geometrical expression on the horizon of the black hole. We thereby obtain a
natural candidate for the entropy of a dynamical black hole in a general theory
of gravity. Our results show that the validity of the ``second law" of black
hole mechanics in dynamical evolution from an initially stationary black hole
to a final stationary state is equivalent to the positivity of a total Noether
flux, and thus may be intimately related to the positive energy properties of
the theory. The relationship between the derivation of our formula for black
hole entropy and the derivation via ``Euclidean methods" also is explained.Comment: 16 pages, EFI 93-4
A Comparison Of Dietary Intakes Of Title Iii-C Participants On Home-Delivered Meal And Non-Meal Days
U okviru robotom potpomognutog protokola za dijagnozu autizma razvijen je modul za detekciju i praćenje proizvoljnog broja predmeta čije su boje poznate te prepoznavanje gesta u pokretima koje se tim predmetima izvode. Modul je prilagođen za izvođenje na humanoidnom robotu NAO u realnom vremenu. Praćenje predmeta se izvodi na robusan način koji dopušta snažnu interakciju između predmeta slične boje bez da se time gubi identitet pojedinog predmeta, te se pokazalo pouzdanim u realnim uvjetima izvođenja zadatka i u testovima praćenja. Prepoznavanje geste s korisničke je strane intuitivno i kvalitetno prepoznaje pokrete koji se koriste pri izvođenju protokola za dijagnozu.As part of a robot-assisted autism diagnostic protocol, a module has been developed for the detection and tracking of an arbitrary number of objects of known color, as well as recognition of gestures based on the movements made by the objects. The module is built for real-time execution on the NAO humanoid robot. Object tracking is done using a robust method allowing for strong interaction between objects of a similar color without disrupting the tracking of any interacting object, and is shown to be reliable both in real-world conditions as well as in tracking tests. The module's gesture recognition capabilities are intuitive to use and provide quality recognition of all movements used in the diagnostic protocol
A simple expression for the ADM mass
We show by an almost elementary calculation that the ADM mass of an
asymptotically flat space can be computed as a limit involving a rate of change
of area of a closed 2-surface. The result is essentially the same as that given
by Brown and York. We will prove this result in two ways, first by direct
calculation from the original formula as given by Arnowitt, Deser and Misner
and second as a corollary of an earlier result by Brewin for the case of
simplicial spaces.Comment: 9 pages, 1 figur
- …