22,229 research outputs found

    Investigation of wheat coleoptile response to phototropic stimulations

    Get PDF
    This report provides a summary of the preparations for, and the conduct and post-flight data analysis of, the Spacelab flight investigation FOTRAN, which flew on the IML-1 mission (STS-42) in January, 1992. The investigation was designed to provide data on the responses of wheat seedlings to various blue-light stimuli given while the plants were exposed to orbital microgravity conditions. Before the flight, a number of hypotheses were established which were to be tested by the data from the flight and parallel ground studies. A description of the experiment protocol developed for the mission is provided, and an account of the activities supported during preparations for and support of the flight experiment is given. Details of the methods used to reduce and analyze the data from the flight are outlined

    Franck-Condon Factors as Spectral Probes of Polaron Structure

    Full text link
    We apply the Merrifield variational method to the Holstein molecular crystal model in D dimensions to compute non-adiabatic polaron band energies and Franck-Condon factors at general crystal momenta. We analyze these observable properties to extract characteristic features related to polaron self-trapping and potential experimental signatures. These results are combined with others obtained by the Global-Local variational method in 1D to construct a polaron phase diagram encompassing all degrees of adiabaticity and all electron-phonon coupling strengths. The polaron phase diagram so constructed includes disjoint regimes occupied by "small" polarons, "large" polarons, and a newly-defined class of "compact" polarons, all mutually separated by an intermediate regime occupied by transitional structures

    Social Entrepreneurship and Social Transformation

    Get PDF
    This study provides a comparative analysis of seven cases of social entrepreneurship that have been widely recognized as successful. The paper suggests factors associated with successful social entrepreneurship, particularly with social entrepreneurship that leads to significant changes in the social, political and economic contexts for poor and marginalized groups. It generates hypotheses about core innovations, leadership, organization, and scaling up in successful social entrepreneurship. The paper concludes with a discussion of the implications for the practice of social entrepreneurship, for further research, and for the continued development of support technologies and institutions that will encourage future social entrepreneurship.This publication is Hauser Center Working Paper No. 15. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Nietzsche, the 19th century, and art

    Get PDF

    A proposal to determine properties of the gravitropic response of plants in the absence of a complicating g-force (GTHRES)

    Get PDF
    Gravitropic responses of oat seedlings (Avena sativa L.) were measured on Earth and in microgravity (IML-1). The seedlings were grown at 1 g either on Earth or on 1 g centrifuges. They were challenged by centripetal accelerations for which the intensity and duration of the stimulations were varied. All stimulation intensities were in the hypogravity region from 0.1 to 1.0 g. All responses occurred either in Spacelab microgravity or during clinorotation on Earth. The experiments were carried out with the same apparatus in Spacelab and on Earth. The experiments addressed a series of scientific questions and useful data were obtained to provide answers to some but not all of those questions

    Stochastic spatial models of plant diseases

    Full text link
    I present three models of plant--pathogen interactions. The models are stochastic and spatially explicit at the scale of individual plants. For each model, I use a version of pair approximation or moment closure along with a separation of timescales argument to determine the effects of spatial clustering on threshold structure. By computing the spatial structure early in an invasion, I find explicit corrections to mean field theory. In the first chapter, I present a lattice model of a disease that is not directly lethal to its host, but affects its ability to compete with neighbors. I use a type of pair approximation to determine conditions for invasions and coexistence. In the second chapter, I study a basic SIR epidemic point process in continuous space. I implement a multiplicative moment closure scheme to compute the threshold transmission rate as a function of spatial parameters. In the final chapter, I model the evolution of pathogen resistance when two plant species share a pathogen. Evolution may lead to non--resistance by a host that finds the disease to be a useful weapon. I use a lattice model with the ordinary pair approximation assumption to study phenotypic evolution via repeated invasions by novel strains.Comment: Ph.D. Dissertation; 140 pages; 75 EPS figures; Latex2
    corecore