8,376 research outputs found
The Impact of the Revenue Reconciliation Act of 1993 on the Pricing Structure of Equity REITs
Tax legislation included in the Revenue Reconciliation Act of 1993 made large-scale investments in equity real estate investment trusts (REITs) more desirable to institutional investors. Other studies have observed an increased level of institutional ownership in REITs during the timeframe following passage of the act. Based on an analysis of equity REITs before and after passage of the Act, the present study finds that its passage coincided with a significant change in the role of unsystematic risk in the pricing of equity REITs.
Liquefying risk in the U.K. commercial real estate market
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1996.Includes bibliographical references (leaves 50-52).by Christopher Porter Brown and Timothy L. Brown.M.S
A new map-making algorithm for CMB polarisation experiments
With the temperature power spectrum of the cosmic microwave background (CMB)
at least four orders of magnitude larger than the B-mode polarisation power
spectrum, any instrumental imperfections that couple temperature to
polarisation must be carefully controlled and/or removed. Here we present two
new map-making algorithms that can create polarisation maps that are clean of
temperature-to-polarisation leakage systematics due to differential gain and
pointing between a detector pair. Where a half wave plate is used, we show that
the spin-2 systematic due to differential ellipticity can also by removed using
our algorithms. The algorithms require no prior knowledge of the imperfections
or temperature sky to remove the temperature leakage. Instead, they calculate
the systematic and polarisation maps in one step directly from the time ordered
data (TOD). The first algorithm is designed to work with scan strategies that
have a good range of crossing angles for each map pixel and the second for scan
strategies that have a limited range of crossing angles. The first algorithm
can also be used to identify if systematic errors that have a particular spin
are present in a TOD. We demonstrate the use of both algorithms and the ability
to identify systematics with simulations of TOD with realistic scan strategies
and instrumental noise.Comment: 11 pages, 6 figure
Optimal scan strategies for future CMB satellite experiments
The B-mode polarisation power spectrum in the Cosmic Microwave Background
(CMB) is about four orders of magnitude fainter than the CMB temperature power
spectrum. Any instrumental imperfections that couple temperature fluctuations
to B-mode polarisation must therefore be carefully controlled and/or removed.
We investigate the role that a scan strategy can have in mitigating certain
common systematics by averaging systematic errors down with many crossing
angles. We present approximate analytic forms for the error on the recovered
B-mode power spectrum that would result from differential gain, differential
pointing and differential ellipticity for the case where two detector pairs are
used in a polarisation experiment. We use these analytic predictions to search
the parameter space of common satellite scan strategies in order to identify
those features of a scan strategy that have most impact in mitigating
systematic effects. As an example we go on to identify a scan strategy suitable
for the CMB satellite proposed for the ESA M5 call. considering the practical
considerations of fuel requirement, data rate and the relative orientation of
the telescope to the earth. Having chosen a scan strategy we then go on to
investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom
Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite
Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Rearrangements in icosahedral boranes and carboranes revisited
The structure, stability, and intermolecular rearrangements between ortho-, meta-, and para-C2B10H12 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} were investigated using the hybrid density functional B3LYP/6-31G(d) for vibrational frequencies, as well as B3LYP/6-311+G(2d,p) for single-point electronic energies. The general trends in free energies of rearrangement between ortho-C2B10H12 to meta-C2B10H12 and meta-C2B10H12 to para-C2B10H12 presented here are consistent with experimental reaction temperatures. In addition, the majority of the rearrangements can be viewed in terms of concerted diamond–square–diamond steps and triangular face rotations
Human sperm ion channel (dys)function:implications for fertilization
BACKGROUND: Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples.OBJECTIVE AND RATIONALE: This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential.SEARCH METHODS: Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate.OUTCOMES: There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men.WIDER IMPLICATIONS: Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.</p
- …