3,089 research outputs found

    Precision Flavour Physics with B→KννˉB\to K\nu\bar\nu and B→Kl+l−B\to Kl^+l^-

    Full text link
    We show that a combined analysis of B→KννˉB\to K\nu\bar\nu and B→Kl+l−B\to Kl^+l^- allows for new physics tests practically free of form factor uncertainties. Residual theory errors are at the level of several percent. Our study underlines the excellent motivation for measuring these modes at a Super Flavour Factory.Comment: 26 pages, 2 figure

    Prospects for Direct CP Violaton in Exclusive and Inclusive Charmless B decays

    Full text link
    Within the Standard Model, CP rate asymmetries for B→K−π+,0B\to K^-\pi^{+,0} could reach 10%. With strong final state phases, they could go up to 20--30%, even for Kˉ0π−\bar K^0\pi^- mode which would have opposite sign. We can account for K−π+K^-\pi^{+}, Kˉ0π−\bar K^0\pi^- and ϕK\phi K rate data with new physics enhanced color dipole coupling and destructive interference. Asymmetries could reach 40--60% for KπK\pi and ϕK\phi K modes and are all of the same sign. We are unable to account for K−π0K^-\pi^0 rate. Our inclusive study supports our exclusive results.Comment: Minor changes, correct a small bug in Fig. 1(b). Version to appear in Phys. Rev. Let

    Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    Get PDF
    The land-water interface of coastal marshes may influence the production of estuarine-dependent fisheries more than the area of these marshes. To test this hypothesis, a spatial model was created to explore the dynamic relationship between marshland-water interface and level of disintegration in the decaying coastal marshes of Louisiana's Barataria, Terrebonne, and Timbalier basins. Calibrating the model with Landsat Thematic Mapper satellite imagery, a parabolic relationship was found between land-water interface and marsh disintegration. Aggregated simulation data suggest that interface in the study area will soon reach its maximum and then decline. A statistically significant positive linear relationship was found between brown shrimp catch and total interface length over the past 28 years. This relationship suggests that shrimp yields will decline when interface declines, possibly beginning about 1995

    Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    Get PDF
    The purpose of the project is to refine and validate a probabilistic spatial computer model through the analyses of thematic mapper imagery. The model is designed to determine how the interface between marshland and water changes as marshland is converted to water in a disintegrating marsh. Coastal marshland in Louisiana is disintegrating at the rate of approximately 40 sq mi a year, and an evaluation of the potential impact of this loss on the landings of estuarine-dependent fisheries is needed by fisheries managers. Understanding how marshland-water interface changes as coastal marshland is lost is essential to the process of evaluating fisheries effects, because several studies suggest that the production of estuarine-dependent fish and shellfish may be more closely related to the interface between marshland and water than to acreage of marshland. The need to address this practical problem has provided an opportunity to apply some scientifically interesting new techniques to the analyses of satellite imagery. Progress with the development of these techniques is the subject of this report

    Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    Get PDF
    LANDSAT thematic mapper (TM) data are being used to refine and validate a stochastic spatial computer model to be applied to coastal resource management problems in Louisiana. Two major aspects of the research are: (1) the measurement of area of land (or emergent vegetation) and water and the length of the interface between land and water in TM imagery of selected coastal wetlands (sample marshes); and (2) the comparison of spatial patterns of land and water in the sample marshes of the imagery to that in marshes simulated by a computer model. In addition to activities in these two areas, the potential use of a published autocorrelation statistic is analyzed

    Solving the SUSY CP problem with flavor breaking F-terms

    Full text link
    Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon^{prime} and to the CP asymmetries in the B decays to psi Ks, phi Ks, eta^{\prime} Ks and Xs gamma. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of Delta mK, Delta mB and epsilon constrain the model requiring extremely heavy squark spectra.Comment: 21 pages, RevTex

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section
    • …
    corecore