179 research outputs found

    Severe thrombocytosis and anemia associated with celiac disease in a young female patient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Platelet counts exceeding 1.000 × 10<sup>3</sup>/μl are usually considered secondary to another cause, particularly to chronic myeloproliferative disease (CMPD). Reactive thrombocytosis due to iron deficiency rarely exceeds platelet counts of 700 × 10<sup>3</sup>/μl.</p> <p>Case presentation</p> <p>Here we report the case of a young woman presenting with clinical signs of severe anemia. Laboratory findings confirmed an iron-deficiency anemia associated with severe thrombocytosis of 1703 × 10<sup>3</sup>/μl. Macroscopic gastrointestinal and genitourinary tract bleeding was excluded. The excessive elevation of platelets, slightly elevated lactate dehydrogenase and slightly elevated leukocytes along with the absence of other inflammation parameters raised the suspicion of an underlying hematological disease. However, bone marrow evaluation could not prove the suspected diagnosis of a CMPD, especially essential thrombocythemia (ET). In the further clinical course the platelet count returned to normal after raising the hemoglobin to a level close to normal range with erythrocyte transfusion, and normalization of serum iron and decline of erythropoietin. Finally, following small bowel biopsy, despite the absence of typical clinical signs, celiac disease was diagnosed. After discharge from hospital the patient was commenced on a gluten-free diet and her hemoglobin almost completely normalized in the further follow-up period.</p> <p>Conclusion</p> <p>This case illustrates the rare constellation of an extreme thrombocytosis most likely secondary to iron deficiency due to celiac disease. This represents, to the best of the authors' knowledge, the highest reported platelet count coincident with iron deficiency. A potential mechanism for the association of iron-deficiency anemia and thrombocytosis is discussed. Even in the presence of 'atypically' high platelets one should consider the possibility of reactive thrombocytosis. Extreme thrombocytosis could emerge in the case of iron deficiency secondary to celiac disease.</p

    Effects of Stem Cell Factor on Hypoxia-Inducible Factor 1 Alpha Accumulation in Human Acute Myeloid Leukaemia and LAD2 Mast Cells

    Get PDF
    Stem cell factor (SCF) is a hematopoietic growth factor that exerts its activity by signalling through the tyrosine kinase receptor known as Kit or CD117. SCF-Kit signalling is crucial for the survival, proliferation and differentiation of hematopoietic cells of myeloid lineage. Furthermore, since myeloid leukaemia cells express the Kit receptor, SCF may play an important role in myeloid leukaemia progression too. However, the mechanisms of this pathophysiological effect remain unclear. Recent evidence shows that SCF triggers accumulation of the inducible alpha subunit of hypoxia-inducible factor 1 (HIF-1) in hematopoietic cells—a transcription complex that plays a pivotal role in cellular adaptation to low oxygen availability. However, it is unknown how SCF impacts on HIF-1α accumulation in human myeloid leukaemia and mast cells. Here we show that SCF induces HIF-1α accumulation in THP-1 human myeloid leukaemia cells but not in LAD2 mast cells. We demonstrated that LAD2 cells have a more robust glutathione (GSH)-dependent antioxidative system compared to THP-1 cells and are therefore protected against the actions of ROS generated in an SCF-dependent manner. BSO-induced GSH depletion led to a significant decrease in HIF-1α prolyl hydroxylase (PHD) activity in THP-1 cells and to near attenuation of it in LAD2 cells. In THP-1 cells, SCF-induced HIF-1α accumulation is controlled via ERK, PI3 kinase/PKC-δ/mTOR-dependent and to a certain extent by redox-dependent mechanisms. These results demonstrate for the first time an important cross-talk of signalling pathways associated with HIF-1 activation—an important stage of the myeloid leukaemia cell life cycle

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours

    Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT

    Get PDF
    International audienceBackground: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200 ± 40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150 ± 80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicit

    Sox6 Is Necessary for Efficient Erythropoiesis in Adult Mice under Physiological and Anemia-Induced Stress Conditions

    Get PDF
    BACKGROUND: Definitive erythropoiesis is a vital process throughout life. Both its basal activity under physiological conditions and its increased activity under anemia-induced stress conditions are highly stimulated by the hormone erythropoietin. The transcription factor Sox6 was previously shown to enhance fetal erythropoiesis together and beyond erythropoietin signaling, but its importance in adulthood and mechanisms of action remain unknown. We used here Sox6 conditional null mice and molecular assays to address these questions. METHODOLOGY/PRINCIPAL FINDINGS: Sox6fl/flErGFPCre adult mice, which lacked Sox6 in erythroid cells, exhibited compensated anemia, erythroid cell developmental defects, and anisocytotic, short-lived red cells under physiological conditions, proving that Sox6 promotes basal erythropoiesis. Tamoxifen treatment of Sox6fl/flCaggCreER mice induced widespread inactivation of Sox6 in a timely controlled manner and resulted in erythroblast defects before reticulocytosis, demonstrating that impaired erythropoiesis is a primary cause rather than consequence of anemia in the absence of Sox6. Twenty five percent of Sox6fl/flErGFPCre mice died 4 or 5 days after induction of acute anemia with phenylhydrazine. The others recovered slowly. They promptly increased their erythropoietin level and amplified their erythroid progenitor pool, but then exhibited severe erythroblast and reticulocyte defects. Sox6 is thus essential in the maturation phase of stress erythropoiesis that follows the erythropoietin-dependent amplification phase. Sox6 inactivation resulted in upregulation of embryonic globin genes, but embryonic globin chains remained scarce and apparently inconsequential. Sox6 inactivation also resulted in downregulation of erythroid terminal markers, including the Bcl2l1 gene for the anti-apoptotic factor Bcl-xL, and in vitro assays indicated that Sox6 directly upregulates Bcl2l1 downstream of and beyond erythropoietin signaling. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that Sox6 is necessary for efficient erythropoiesis in adult mice under both basal and stress conditions. It is primarily involved in enhancing the survival rate and maturation process of erythroid cells and acts at least in part by upregulating Bcl2l1

    Negative Autoregulation by Fas Stabilizes Adult Erythropoiesis and Accelerates Its Stress Response

    Get PDF
    Erythropoiesis maintains a stable hematocrit and tissue oxygenation in the basal state, while mounting a stress response that accelerates red cell production in anemia, blood loss or high altitude. Thus, tissue hypoxia increases secretion of the hormone erythropoietin (Epo), stimulating an increase in erythroid progenitors and erythropoietic rate. Several cell divisions must elapse, however, before Epo-responsive progenitors mature into red cells. This inherent delay is expected to reduce the stability of erythropoiesis and to slow its response to stress. Here we identify a mechanism that helps to offset these effects. We recently showed that splenic early erythroblasts, ‘EryA’, negatively regulate their own survival by co-expressing the death receptor Fas, and its ligand, FasL. Here we studied mice mutant for either Fas or FasL, bred onto an immune-deficient background, in order to avoid an autoimmune syndrome associated with Fas deficiency. Mutant mice had a higher hematocrit, lower serum Epo, and an increased number of splenic erythroid progenitors, suggesting that Fas negatively regulates erythropoiesis at the level of the whole animal. In addition, Fas-mediated autoregulation stabilizes the size of the splenic early erythroblast pool, since mutant mice had a significantly more variable EryA pool than matched control mice. Unexpectedly, in spite of the loss of a negative regulator, the expansion of EryA and ProE progenitors in response to high Epo in vivo, as well as the increase in erythropoietic rate in mice injected with Epo or placed in a hypoxic environment, lagged significantly in the mutant mice. This suggests that Fas-mediated autoregulation accelerates the erythropoietic response to stress. Therefore, Fas-mediated negative autoregulation within splenic erythropoietic tissue optimizes key dynamic features in the operation of the erythropoietic network as a whole, helping to maintain erythroid homeostasis in the basal state, while accelerating the stress response

    Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    Get PDF
    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals

    Promotion of Cancer Stem-Like Cell Properties in Hepatitis C Virus-Infected Hepatocytes

    No full text
    • …
    corecore