28 research outputs found
Fire and biodiversity in the Anthropocene
The workshop leading to this paper was funded by the Centre Tecnològic Forestal de Catalunya and the ARC Centre of Excellence for Environmental Decisions. L.T.K. was supported by a Victorian Postdoctoral Research Fellowship (Victorian Government), a Centenary Fellowship (University of Melbourne), and an Australian Research Council Linkage Project Grant (LP150100765). A.R. was supported by the Xunta de Galicia (Postdoctoral Fellowship ED481B2016/084-0) and the Foundation for Science and Technology under the FirESmart project (PCIF/MOG/0083/2017). A.L.S. was supported by a Marie Skłodowska-Curie Individual Fellowship (746191) under the European Union Horizon 2020 Programme for Research and Innovation. L.R. was supported by the Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub. L.B. was partially supported by the Spanish Government through the INMODES (CGL2014-59742-C2-2-R) and the ERANET-SUMFORESTS project FutureBioEcon (PCIN-2017-052). This research was supported in part by the U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.PostprintPeer reviewe
Conservation planning in a fire-prone Mediterranean region: threats and opportunities for bird species
In response to the processes threatening biodiversity such as habitat loss, effective selection of priority conservation areas is required. However, reserve selection methods usually ignore the drivers of future habitat changes, thus compromising the effectiveness of conservation. In this work, we formulated an approach to explicitly quantify the impact of fire on conservation areas, considering such disturbance as a driver of land-cover changes. The estimated fire impact was integrated as a constraint in the reserve selection process to tackle the likely threats or opportunities that fire disturbance might cause to the targeted species depending on their habitat requirements. In this way, we selected conservation areas in a fire-prone Mediterranean region for two bird assemblages: forest and open-habitat species. Differences in conservation areas selected before and after integrating the impact of fire in the reserve selection process were assessed. Integration of fire impact for forest species moved preferences towards areas that were less prone to burn. However, a larger area was required to achieve the same conservation goals. Conversely, integration of fire impacts for open-habitat species shifted preferences towards conservation areas in locations where the persistence of their required habitat is more likely (i.e. shrublands). In other words, we prioritized the conservation of not only the current distribution of open-habitat birds, but also the disturbance process (i.e. fire) that favours their preferred habitat and distributions in the long term. Finally, this work emphasizes the need to consider the opposing potential impacts of wildfires on species for an effective conservation planning
The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests
Science and society are increasingly interested in predicting the effects of global change and socio-economic development on natural systems, to ensure maintenance of both ecosystems and human well-being. The Intergovernmental Platform on Biodiversity and Ecosystem Services has identified the combination of ecological modelling and scenario forecasting as key to improving our understanding of those effects, by evaluating the relationships and feedbacks between direct and indirect drivers of change, biodiversity, and ecosystem services. Using as case study the forests of the Mediterranean basin (complex socio-ecological systems of high social and conservation value), we reviewed the literature to assess (1) what are the modelling approaches most commonly used to predict the condition and trends of biodiversity and ecosystem services under future scenarios of global change, (2) what are the drivers of change considered in future scenarios and at what scales, and (3) what are the nature and ecosystem service indicators most commonly evaluated. Our review shows that forecasting studies make relatively little use of modelling approaches accounting for actual ecological processes and feedbacks between different socio-ecological sectors; predictions are generally made on the basis of a single (mainly climate) or a few drivers of change. In general, there is a bias in the set of nature and ecosystem service indicators assessed. In particular, cultural services and human well-being are greatly underrepresented in the literature. We argue that these shortfalls hamper our capacity to make the best use of predictive tools to inform decision-making in the context of global change.This work was supported by the Spanish Government through the INMODES project (grant number CGL2017-89999-C2-2-R), the ERA-NET FORESTERRA project INFORMED (grant number 29183), and the project Boscos Sans per a una Societat Saludable funded by Obra Social la Caixa (https://obrasociallacaixa.org/). AMO and AA were supported by Spanish Government through the “Juan de la Cierva” fellowship program (IJCI-2016-30349 and IJCI-2016-30049, respectively). JVRD was supported by the Government of Asturias and the FP7-Marie Curie-COFUND program of the European Commission (Grant “Clarín” ACA17-02)
Reassessing global change research priorities in mediterranean terrestrial ecosystems : how far have we come and where do we go from here?
Aim: Mediterranean terrestrial ecosystems serve as reference laboratories for the investigation of global change because of their transitional climate, the high spatiotemporal variability of their environmental conditions, a rich and unique biodiversity and a wide range of socio-economic conditions. As scientific development and environmental pressures increase, it is increasingly necessary to evaluate recent progress and to challenge research priorities in the face of global change. - Location: Mediterranean terrestrial ecosystems. - Methods: This article revisits the research priorities proposed in a 1998 assessment. - Results: A new set of research priorities is proposed: (1) to establish the role of the landscape mosaic on fire-spread; (2) to further research the combined effect of different drivers on pest expansion; (3) to address the interaction between drivers of global change and recent forest management practices; (4) to obtain more realistic information on the impacts of global change and ecosystem services; (5) to assess forest mortality events associated with climatic extremes; (6) to focus global change research on identifying and managing vulnerable areas; (7) to use the functional traits concept to study resilience after disturbance; (8) to study the relationship between genotypic and phenotypic diversity as a source of forest resilience; (9) to understand the balance between C storage and water resources; (10) to analyse the interplay between landscape-scale processes and biodiversity conservation; (11) to refine models by including interactions between drivers and socio-economic contexts; (12) to understand forest-atmosphere feedbacks; (13) to represent key mechanisms linking plant hydraulics with landscape hydrology. - Main conclusions:(1) The interactive nature of different global change drivers remains poorly understood. (2) There is a critical need for the rapid development of regional- and global-scale models that are more tightly connected with large-scale experiments, data networks and management practice. (3) More attention should be directed to drought-related forest decline and the current relevance of historical land use
Seguimiento de la dinámica espacial y temporal de comunidades de aves en paisajes mediterráneos afectados por grandes fuegos
[EN] Monitoring spatial and temporal dynamics of bird communities in Mediterranean land- scapes affected by large wildfires.
We presented a bird-monitoring database in Mediterranean landscapes (Catalonia, NE Spain) affected by wildfires and we evaluated: 1) the spatial and temporal variability in the bird community composi- tion and 2) the influence of pre-fire habitat configuration in the composition of bird communities. The DINDIS database results from the monitoring of bird communities occupying all areas affected by large wildfires in Catalonia since 2000. We used bird surveys conducted from 2006 to 2009 and performed a principal components analysis to describe two main gradients of variation in the composition of bird communities, which were used as descriptors of bird communities in subsequent analyses. We then analysed the relationships of these community descriptors with bioclimatic regions within Catalonia, time since fire and pre-fire vegetation (forest or shrubland). We have conducted 1,918 bird surveys in
567 transects distributed in 56 burnt areas. Eight out of the twenty most common detected species have an unfavourable conservation status, most of them being associated to open-habitats. Both bird communities’ descriptors had a strong regional component and were related to pre-fire vegetation, and to a lesser extent to the time since fire. We came to the conclusion that the responses of bird communi- ties to wildfires are heterogeneous, complex and context dependent. Large-scale monitoring datasets, such as DINDIS, might allow identifying factors acting at different spatial and temporal scales that affect the dynamics of species and communities, giving additional information on the causes under general trends observed using other monitoring systems.[ES] Se ha presentado una base de datos de aves en paisajes mediterráneos (Cataluña, NE España) afectados por incendios forestales y se ha evaluado: 1) la variabilidad espacial y temporal de la respuesta de la comunidad de aves al fuego y 2) el impacto de la vegetación antes del incendio en la composición de la comunidad de aves. La base de datos DINDIS contiene información avifaunística de todas las áreas forestales quemadas desde el año 2000 en Cataluña. Se utiliza la información disponible hasta la fecha y se realiza un análisis de componentes principales para describir dos patrones esenciales de variación en la comunidad de aves, los cuales fueron utilizados como descriptores de la comunidad en los siguientes análisis. Se analiza la relación de dichos descriptores con las regiones bioclimáticas dentro de Cataluña, el tiempo transcurrido después del fuego y la vegetación antes del incendio (bosque o matorral). Se realizó un total de 1.918 censos en 567 transectos distribuidos en 56 áreas quemadas. Ocho de las veinte especies más comunes tienen valor de conservación, la mayoría asociadas a hábitats abiertos. Ambos descriptores de la comunidad de aves estuvieron significativamente relacionados con la componente regional y con la vegetación antes del incendio, y en menor medida con el tiempo transcurrido después del incendio. Se concluye que las respuestas de las comunidades de aves a los incendios son heterogéneas, complejas y dependientes del contexto del paisaje.Asimismo, la disponibilidad de una base de datos a gran escala como DINDIS permitiría identificar los factores que actúan a diferentes escalas espaciales y temporales que determinan la dinámica de las especies, ofreciendo información complementaria sobre las causas detrás de las tendencias poblacionales observadas utilizando otros sistemas de monitoreo.Peer reviewe
Bridging the divide: Integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems
© 2018 by the authors.Conserving animals and plants in fire-prone landscapes requires evidence of how fires affect modified ecosystems. Despite progress on this front, fire ecology is restricted by a dissonance between two dominant paradigms: ‘fire mosaics’ and ‘functional types’. The fire mosaic paradigm focuses on animal responses to fire events and spatial variation, whereas the functional type paradigm focuses on plant responses to recurrent fires and temporal variation. Fire management for biodiversity conservation requires input from each paradigm because animals and plants are interdependent and influenced by spatial and temporal dimensions of fire regimes. We propose that better integration of animal-based and plant-based approaches can be achieved by identifying common metrics that describe changes in multiple taxa; linking multiple components of the fire regime with animal and plant data; understanding plant-animal interactions; and incorporating spatial and temporal characteristics of fires into conservation management. Our vision for a more integrated fire ecology could be implemented via a collaborative and global network of research and monitoring sites, where measures of animals and plants are linked to real-time data on fire regimes.Kelly was funded by the Australian Research Council Centre of Excellence for Environmental Decisions and a Victorian Postdoctoral Research Fellowship delivered by veski on behalf of the Victorian Government. Brotons and Pausas were funded by the Government of Spain on Project CGL2017-89999-C2 and CGL2015-64086-P, respectively. Smith was supported by Marie Skłodowska-Curie Individual Fellowship FIRESCAPE-746191 under the EU H2020 Programme for Research and Innovation