439 research outputs found

    Assessing the Polarization of a Quantum Field from Stokes Fluctuation

    Get PDF
    We propose an operational degree of polarization in terms of the variance of the projected Stokes vector minimized over all the directions of the Poincar\'e sphere. We examine the properties of this degree and show that some problems associated with the standard definition are avoided. The new degree of polarization is experimentally determined using two examples: a bright squeezed state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome

    Maximally polarized states for quantum light fields

    Get PDF
    The degree of polarization of a quantum state can be defined as its Hilbert-Schmidt distance to the set of unpolarized states. We demonstrate that the states optimizing this degree for a fixed average number of photons Nˉ\bar{N} present a fairly symmetric, parabolic photon statistics, with a variance scaling as Nˉ2\bar{N}^2. Although no standard optical process yields such a statistics, we show that, to an excellent approximation, a highly squeezed vacuum can be considered as maximally polarized.Comment: 4 pages, 3 eps-color figure

    Synthesis and characterization of core-shell structure silica-coated Fe29.5Ni70.5 nanoparticles

    Full text link
    In view of potential applications of magnetic particles in biomedicine and electromagnetic devices, we made use of the classical Stober method base-catalysed hydrolysis and condensation of tetraethoxysilane (TEOS) to encapsulate FeNi nanoparticles within a silica shell. An original stirring system under high power ultrasounds made possible to disperse the otherwise agglomerated particles. Sonication guaranteed particles to remain dispersed during the Stober synthesis and also improved the efficiency of the method. The coated particles are characterized by electron microscopy (TEM) and spectroscopy (EDX) showing a core-shell structure with a uniform layer of silica. Silica-coating does not affect the core magnetic properties. Indeed, all samples are ferromagnetic at 77 K and room temperature and the Curie point remains unchanged. Only the coercive force shows an unexpected non-monotonous dependence on silica layer thickness.Comment: Regular paper submited to international peer-reveiwed journa

    Dissipation and decoherence in photon interferometry

    Full text link
    The propagation of polarized photons in optical media can be effectively modeled by means of quantum dynamical semigroups. These generalized time evolutions consistently describe phenomena leading to loss of phase coherence and dissipation originating from the interaction with a large, external environment. High sensitive experiments in the laboratory can provide stringent bounds on the fundamental energy scale that characterizes these non-standard effects.Comment: 14 pages, plain-Te

    "Which-path information" and partial polarization in single-photon interference experiments

    Full text link
    It is shown that the degree of polarization of light, generated by superposition in a single-photon interference experiment, may depend on the indistinguishability of the photon-paths.Comment: 9 page

    Quantum light depolarization: the phase-space perspective

    Full text link
    Quantum light depolarization is handled through a master equation obtained by coupling dispersively the field to a randomly distributed atomic reservoir. This master equation is solved by transforming it into a quasiprobability distribution in phase space and the quasiclassical limit is investigated.Comment: 6 pages, no figures. Submitted for publicatio

    Effective permittivity of mixtures of anisotropic particles

    Full text link
    We use a new approach to derive dielectric mixing rules for macroscopically homogeneous and isotropic multicomponent mixtures of anisotropic inhomogeneous dielectric particles. Two factors of anisotropy are taken into account, the shape of the particles and anisotropy of the dielectric parameters of the particles' substances. Our approach is based upon the notion of macroscopic compact groups of particles and the procedure of averaging of the fields over volumes much greater than the typical scales of these groups. It enables us to effectively sum up the contributions from multiple interparticle reemission and short-range correlation effects, represented by all terms in the infinite iterative series for the electric field strength and induction. The expression for the effective permittivity can be given the form of the Lorentz-Lorenz type, which allows us to determine the effective polarizabilities of the particles in the mixture. These polarizabilities are found as integrals over the regions occupied by the particles and taken of explicit functions of the principal components of the permittivity tensors of the particles' substances and the permittivity of the host medium. The case of a mixture of particles of the ellipsoidal shape is considered in detail to exemplify the use of general formulas. As another example, Bruggeman-type formulas are derived under pertinent model assumptions. The ranges of validity of the results obtained are discussed as well.Comment: 9 pages, 4 figure

    Quantum polarization tomography of bright squeezed light

    Full text link
    We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribution to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus Issue on Quantum Tomography. Comments welcom
    corecore