71 research outputs found

    Seismic Vulnerability Assessment of Priority Cultural Heritage Structures in the Philippines

    Get PDF
    At the end of 2013 two catastrophic events occurred in the Philippines: the M 7.2 earthquake in Bohol and the strongest ever recorded Typhoon Haiyan, causing destruction across the islands of Cebu, Bohol and the Visayas region. These events raised the need to carry out a multi-hazard risk assessment of heritage buildings, many of which were irretrievably lost in the disasters. Philippines’ Department of Tourism engaged ARS Progetti S.P.A., Rome, Italy, and the Center for Conservation of Cultural Property and Environment in the Tropics (CCCPET), University of Sto. Tomas, Manila, to undertake the “Assessment of the Multi-Hazard Vulnerability of Priority Cultural Heritage Structures in the Philippines”, with experts from University College London, UK, and De La Salle University. The main objective of the project was to reduce the vulnerability of cultural heritage structures to multiple natural hazards, including earthquake, typhoon, flood, by: (i) prioritizing of specific structures based on hazard maps and historical records; (ii) assessing their vulnerability; and (iii) recommending options to mitigate the impacts on them. The paper presents the methodology introduced to determine the seismic risk these heritage buildings are exposed to. All the selected cultural heritage structures are under the jurisdiction of the National Museum Commission of Philippines and of the National Commission for Culture and Arts

    Tailoring 3D single-walled carbon nanotubes anchored to indium tin oxide for natural cellular uptake and intracellular sensing.

    Get PDF
    The ability to monitor intracellular events in real time is paramount to advancing fundamental biological and clinical science. We present the first demonstration of a direct interface of vertically aligned single-walled carbon nanotubes (VASWCNTs) with eukaryotic cells, RAW 264.7 mouse macrophage cell line. The cells were cultured on indium tin oxide with VASWCNTs. VASWCNTs entered the cells naturally without application of any external force and were shown to sense the intracellular presence of a redox active moiety, methylene blue. The technology developed provides an alluring platform to enable electrochemical study of an intracellular environment

    Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains

    Get PDF
    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlet/outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries (Guo, Zheng and Shi, Phys Fluids (2002); Bouzdi, Firdaouss and Lallemand, Phys. Fluids (2001); Junk and Yang Phys. Rev. E (2005)) in our open-source application \HemeLB{}. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Reynolds (1--300) and Womersley (4--12) numbers and steady flow in a curved pipe at relevant Dean number (100--200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand and Guo-Zheng-Shi methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Reynolds number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs.\ multiple relaxation time) and velocity set (D3Q15 vs.\ D3Q19 vs.\ D3Q27) does not significantly affect the accuracy in the problems studied.Comment: Submitted to Phys. Rev. E, 14 pages, 6 figures, 5 table
    corecore