70 research outputs found

    Why pair production cures covariance in the light-front?

    Full text link
    We show that the light-front vaccum is not trivial, and the Fock space for positive energy quanta solutions is not complete. As an example of this non triviality we have calculated the electromagnetic current for scalar bosons in the background field method were the covariance is restored through considering the complete Fock space of solutions. We also show thus that the method of "dislocating the integration pole" is nothing more than a particular case of this, so that such an "ad hoc" prescription can be dispensed altogether if we deal with the whole Fock space. In this work we construct the electromagnetic current operator for a system composed of two free bosons. The technique employed to deduce these operators is through the definition of global propagators in the light front when a background electromagnetic field acts on one of the particles.Comment: 11 pages, 2 figure

    Dynamical Chiral Symmetry Breaking on the Light Front.II. The Nambu--Jona-Lasinio Model

    Full text link
    An investigation of dynamical chiral symmetry breaking on the light front is made in the Nambu--Jona-Lasinio model with one flavor and N colors. Analysis of the model suffers from extraordinary complexity due to the existence of a "fermionic constraint," i.e., a constraint equation for the bad spinor component. However, to solve this constraint is of special importance. In classical theory, we can exactly solve it and then explicitly check the property of ``light-front chiral transformation.'' In quantum theory, we introduce a bilocal formulation to solve the fermionic constraint by the 1/N expansion. Systematic 1/N expansion of the fermion bilocal operator is realized by the boson expansion method. The leading (bilocal) fermionic constraint becomes a gap equation for a chiral condensate and thus if we choose a nontrivial solution of the gap equation, we are in the broken phase. As a result of the nonzero chiral condensate, we find unusual chiral transformation of fields and nonvanishing of the light-front chiral charge. A leading order eigenvalue equation for a single bosonic state is equivalent to a leading order fermion-antifermion bound-state equation. We analytically solve it for scalar and pseudoscalar mesons and obtain their light-cone wavefunctions and masses. All of the results are entirely consistent with those of our previous analysis on the chiral Yukawa model.Comment: 23 pages, REVTEX, the version to be published in Phys.Rev.D; Some clarifications in discussion of the LC wavefunctions adde

    Dynamical Chiral Symmetry Breaking on the Light Front I. DLCQ Approach

    Get PDF
    Dynamical chiral symmetry breaking in the DLCQ method is investigated in detail using a chiral Yukawa model closely related to the Nambu-Jona-Lasinio model. By classically solving three constraints characteristic of the light-front formalism, we show that the chiral transformation defined on the light front is equivalent to the usual one when bare mass is absent. A quantum analysis demonstrates that a nonperturbative mean-field solution to the ``zero-mode constraint'' for a scalar boson (sigma) can develop a nonzero condensate while a perturbative solution cannot. This description is due to our identification of the ``zero-mode constraint'' with the gap equation. The mean-field calculation clarifies unusual chiral transformation properties of fermionic field, which resolves a seemingly inconsistency between triviality of the null-plane chiral charge Q_5|0>=0 and nonzero condensate. We also calculate masses of scalar and pseudoscalar bosons for both symmetric and broken phases, and eventually derive the PCAC relation and nonconservation of Q_5 in the broken phase.Comment: Revised version to appear in Phys. Rev. D. 19 pages, 4 figures, REVTEX. Derivation of the PCAC relation is given. Its relation to the nonconservation of chiral charge is clarified. 1 figure and some references adde

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0

    Sum rules and dualities for generalized parton distributions: is there a holographic principle?

    Full text link
    To leading order approximation, the physical content of generalized parton distributions (GPDs) that is accessible in deep virtual electroproduction of photons or mesons is contained in their value on the cross-over trajectory. This trajectory separates the t-channel and s-channel dominated GPD regions. The underlying Lorentz covariance implies correspondence between these two regions through their relation to GPDs on the cross-over trajectory. This point of view leads to a family of GPD sum rules which are a quark analogue of finite energy sum rules and it guides us to a new phenomenological GPD concept. As an example, we discuss the constraints from the JLab/Hall A data on the dominant u-quark GPD H. The question arises whether GPDs are governed by some kind of holographic principle.Comment: 45 pages, 4 figures, Sect. 2 reorganized for clarity. Typos in Eq. (20) corrected. 4 new refs. Matches published versio

    Dilepton production in heavy ion collisions at intermediate energies

    Full text link
    We present a unified description of the vector meson and dilepton production in elementary and in heavy ion reactions. The production of vector mesons (ρ,ω\rho,\omega) is described via the excitation of nuclear resonances (RR). The theoretical framework is an extended vector meson dominance model (eVMD). The treatment of the resonance decays RNVR\longmapsto NV with arbitrary spin is covariant and kinematically complete. The eVMD includes thereby excited vector meson states in the transition form factors. This ensures correct asymptotics and provides a unified description of photonic and mesonic decays. The resonance model is successfully applied to the ω\omega production in p+pp+p reactions. The same model is applied to the dilepton production in elementary reactions (p+p,p+dp+p, p+d). Corresponding data are well reproduced. However, when the model is applied to heavy ion reactions in the BEVALAC/SIS energy range the experimental dilepton spectra measured by the DLS Collaboration are significantly underestimated at small invariant masses. As a possible solution of this problem the destruction of quantum interference in a dense medium is discussed. A decoherent emission through vector mesons decays enhances the corresponding dilepton yield in heavy ion reactions. In the vicinity of the ρ/ω\rho/\omega-peak the reproduction of the data requires further a substantial collisional broadening of the ρ\rho and in particular of the ω\omega meson.Comment: 32 pages revtex, 19 figures, to appear in PR

    Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering

    Get PDF
    We investigate the possibility of identifying an explicit pionic component of the nucleon through measurements of polarized Δ++\Delta^{++} baryon fragments produced in deep-inelastic leptoproduction off polarized protons, which may help to identify the physical mechanism responsible for the breaking of the Gottfried sum rule. The pion-exchange model predicts highly correlated polarizations of the Δ++\Delta^{++} and target proton, in marked contrast with the competing diquark fragmentation process. Measurement of asymmetries in polarized Λ\Lambda production may also reveal the presence of a kaon cloud in the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in Zeit. Phys.

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Next-to-Leading Order QCD Analysis of Polarized Deep Inelastic Scattering Data

    Full text link
    We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions g1p,g1ng_1^p, g_1^n, and g1dg_1^d, including the new experimental information on the Q2Q^2 dependence of g1ng_1^n. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the Q2Q^2 dependence of the ratio g1/F1g_1/F_1 and evolve the experimental data to a constant Q2=5GeV2Q^2 = 5 GeV^2. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.Comment: 21 pages, 4 figures; final version to be published in Phys. Lett. B. References updated. Uses elsart.cls version 1996/04/22, 2e-1.4
    corecore