4 research outputs found

    Three-dimensional muon imaging of cavities inside the Temperino mine (Italy)

    Get PDF
    : Muon radiography (muography) is an imaging technique based on atmospheric muon absorption in matter that allows to obtain two and three-dimensional images of internal details of hidden objects or structures. The technique relies on atmospheric muon flux measurements performed around and underneath the object under examination. It is a non-invasive and passive technique and thus can be thought of as a valid alternative to common prospecting techniques used in archaeological, geological and civil security fields. This paper describes muon radiography measurements, in the context of archaeological and geological studies carried out at the Temperino mine (LI, Tuscany, Italy), for the search and three-dimensional visualisation of cavities. This mine has been exploited since Etruscan times until recently (1973), and is now an active tourist attraction with public access to the tunnels. Apart from the archaeological interest, the importance of mapping the cavities within this mine lies in identifying the areas where the extraction ores were found and also in the safety issues arising from the tourist presence inside the mine. The three-dimensional imaging is achieved with two different algorithms: one involving a triangulation of two or more measurements at different locations; the other, an innovative technique used here for the first time, is based on the back-projections of reconstructed muon tracks. The latter requires only a single muographic data tacking and is to be preferred in applications where more than one site location can be difficult to access. Finally the quality of the three-dimensional muographic imaging was evaluated by comparing the results with the laser scan profiles obtained for some known cavities within the Temperino mine

    Structural Control at Monte Somma and Vesuvio during the Last 5600 Years through Time and Space Distribution of Volcanic Vents

    No full text
    Vesuvio is likely the most if not one of the most dangerous volcanoes in the world. It is an active volcano, quiescent since 1944. The activity of the Monte Somma and Vesuvio volcanic complex is commonly referred to as two central volcanic edifices, namely Monte Somma and Vesuvio. Nevertheless, the opening of numerous eruptive fissures and related vents have characterized Monte Somma and Vesuvio throughout their lives. Spatter cones, spatter ramparts, and related eruptive fissures are disseminated downslope of Vesuvio’s main cone and on the southern slopes of the volcano. Similarly, cinder cones, spatter cones, and welded spatters are distributed in the sequence cropping out on the Monte Somma cliff and on the northern slopes of Monte Somma. In this work, a total of 168 eruptive vents have been identified and characterized in a GIS environment in which field data have been merged with relevant information from historical maps and documents. These vents have been arranged into units bounded by unconformities (Unconformity Bounded Stratigraphic Units) defining the eruptive history of the volcano. Alignments of vents and eruptive fissures within each unit have been compared with regional tectonic elements and the volcano-tectonic features affecting Monte Somma and Vesuvio during the last 5600 years, thus inferring that different structural trends were active in the different stratigraphic units. In particular, we show that the N300°–320° regional, Apennine, left-lateral, strike-slip fault system, the N040°–055° Torre del Greco direct fault system, the N70° and the EW fault system, and the generally NS oriented group of local brittle elements, all analyzed here, were differently active during the investigated time span. These tectonic trends might control the position of the eruptive fissures and vents in case of future unrest of the volcano

    A model chain approach for coastal inundation: Application to the bay of Alghero

    No full text
    Coastal inundation is an important threat for many nearshore regions worldwide, and has significantly increased in the last years also due to sea-level rise and augmented impact of extreme events, like sea storms. Many countries and regions have recently invested to overcome such problems, which commonly lead to structure damages, beach erosion and many other consequences. Numerical modeling is an important tool for coastal inundation prediction, being a valuable support for management issues to mitigate the inundation risk or suggest resilient solutions. The present work illustrates a novel approach, based on a numerical model chain that exploits a tide-surge-wave operational modeling system (Kassandra), a phase-averaged model (ROMS-SWAN) for the wave propagation towards the shore, and a phase-resolving solver (NSWE) for the prediction of runup and coastal inundation. Such a chain is applied to the bay of Alghero (Sardinia, Italy), where the results of the mentioned chain are compared to those obtained using, in place of the phase-averaged model, an analytical model for the wave propagation. Results confirm that both chain approaches provide comparable inundations, though the use of the analytical, more approximate (e.g., less accurate and reliable description of wave breaking dissipation), model suggests more severe conditions and larger flooded areas. Our contribution provides a methodological approach for an accurate and reliable estimate of coastal flooding
    corecore