165 research outputs found

    Highly Selective Escape from KSHV-mediated Host mRNA Shutoff and Its Implications for Viral Pathogenesis

    Get PDF
    During Kaposi's sarcoma (KS)–associated herpesvirus (KSHV) lytic infection, many virus-encoded signaling molecules (e.g., viral G protein–coupled receptor [vGPCR]) are produced that can induce host gene expression in transiently transfected cells, and roles for such induced host genes have been posited in KS pathogenesis. However, we have recently found that host gene expression is strongly inhibited by 10–12 h after lytic reactivation of KSHV, raising the question of whether and to what extent de novo host gene expression induced by viral signaling molecules can proceed during the lytic cycle. Here, we show by microarray analysis that expression of most vGPCR target genes is drastically curtailed by this host shutoff. However, rare cellular genes can escape the host shutoff and are potently up-regulated during lytic KSHV growth. Prominent among these is human interleukin-6, whose striking induction may contribute to the overexpression of this cytokine in several disease states linked to KSHV infection

    Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape

    Get PDF
    One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection

    Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) is a DNA virus that is linked to several human malignancies. The cGMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is able to detect KSHV during primary infection and regulates the reactivation of KSHV from latency. We screened KSHV proteins for their ability to inhibit this pathway and block IFN-β activation. One KSHV protein, vIRF1, inhibited this pathway by preventing STING from interacting with TBK1 and inhibiting STING’s phosphorylation and concomitant activation. Moreover, depletion of vIRF1 in the context of KSHV infection prevented efficient viral reactivation and replication, and increased the host IFN response to KSHV. Collectively, our results demonstrate that the modulation of this pathway is important for viral transmission and the lifelong persistence of gammaherpesviruses in the human population

    Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    Get PDF
    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells

    Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency

    Get PDF
    During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3′ end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment

    The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection

    Get PDF
    Gammaherpesviruses such as KSHV and EBV establish lifelong persistent infections through latency in lymphocytes. These viruses have evolved several strategies to counteract the various components of the innate and adaptive immune systems. We conducted an unbiased screen using the genetically and biologically related virus, MHV-68, to find viral ORFs involved in the inhibition of type I interferon signaling and identified a conserved viral dUTPase, ORF54. Here we define the contribution of ORF54 in type I interferon inhibition by ectopic expression and through the use of genetically modified MHV-68. ORF54 and an ORF54 lacking dUTPase enzymatic activity efficiently inhibit type I interferon signaling by inducing the degradation of the type I interferon receptor protein IFNAR1. Subsequently, we show in vitro that the lack of ORF54 causes a reduction in lytic replication in the presence of type I interferon signaling. Investigation of the physiological consequence of IFNAR1 degradation and importance of ORF54 during MHV-68 in vivo infection demonstrates that ORF54 has an even greater impact on persistent infection than on lytic replication. MHV-68 lacking ORF54 expression is unable to efficiently establish latent infection in lymphocytes, although it replicates relatively normally in lung tissues. However, infection of IFNAR−/− mice alleviates this phenotype, emphasizing the specific role of ORF54 in type I interferon inhibition. Infection of mice and cells by a recombinant MHV-68 virus harboring a site specific mutation in ORF54 rendering the dUTPase inactive demonstrates that dUTPase enzymatic activity is not required for anti-interferon function of ORF54. Moreover, we find that dUTPase activity is dispensable at all stages of MHV-68 infection analyzed. Overall, our data suggest that ORF54 has evolved anti-interferon activity in addition to its dUTPase enzymatic activity, and that it is actually the anti-interferon role that renders ORF54 critical for establishing an effective persistent infection of MHV-68

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    Modulation of the Translational Landscape During Herpesvirus Infection.

    No full text
    Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells
    • …
    corecore