4 research outputs found

    N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity: Implications for Hyperglycemia

    Get PDF
    OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1 secretion is changed under hyperglycemic conditions. RESULTS-N-glycosylation of CN-1 was either inhibited by tunicamycin in pCSII-CN-1-transfected Cos-7 cells or by stepwise deletion of its three putative N-glycosylation sites. CN-1 protein expression, N-glycosylation, and enzyme activity were assessed in cell extracts and supernatants. The influence of hyperglycemia on CN-1 enzyme activity in human serum was tested in homozygous (CTG)(5) diabetic patients and healthy control subjects Tunicamycin completely inhibited CN-1 secretion Deletion of all N-glycosylation sites was required to reduce CN-1 secretion efficiency. Enzyme activity was already diminished when two sites were deleted. In pCSII-CN-1-transfected Cos-7 cells cultured in medium containing 25 mmol/l D-glucose, the immature 61 kilodaltons (kDa) CN-1 immune reactive band was not detected. This was paralleled by an increased GlcNAc expression in cell lysates and CN-1 expression in the supernatants. Homozygous (CTG)(5) diabetic patients had significantly higher serum CN-1 activity compared with genotype-matched, healthy control subjects CONCLUSIONS-We conclude that apart from the (CTG)(n) polymorphism in the signal peptide of CN-1, N-glycosylation is essential for appropriate secretion and enzyme activity. Since hyperglycemia enhances CN-1 secretion and enzyme activity, our data suggest that poor blood glucose control in diabetic patients might result in an increased CN-1 secretion even in the presence of the (CTG)(5) allele Diabetes 59:1984-1990, 201

    Prohibitin-2 Depletion Unravels Extra-Mitochondrial Functions at the Kidney Filtration Barrier

    No full text
    Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondria inner membrane. Loss of the stomatin/PHB/flotitlin/HflK/C (SPFH) domain containing protein PHB2 causes mitochondrial dysfunction and defective mitochondria-mediated signaling, which is implicated in a variety of human diseases, including progressive renal disease. Here, we provide evidence of additional, extra-mitochondria functions of this membrane-anchored protein. Immunofluorescence and immunogold labeling detected PHB2 at mitochondria membranes and at the slit diaphragm, a specialized cell junction at the filtration slit of glomerular podocytes. PHB2 coprecipitated with podocin, another SPFH domain-containing protein, essential for the assembly of the slit diaphragm protein-Lipid supercomplex. Consistent with an evolutionarily conserved extra-mitochondria function, the ortholog of PHB2 in Caenorhabditis elegans was also not restricted to mitochondria but colocalized with the mechanosensory complex that requires the podocin ortholog MEC2 for assembly. Knockdown of phb-2 partially phenocopied Loss of mec-2 in touch neurons of the nematode, resulting in impaired gentle touch sensitivity. Collectively, these data indicate that, besides its established role in mitochondria, PHB2 may have an additional function in conserved protein lipid complexes at the plasma membrane

    Prohibitin-2 Depletion Unravels Extra-Mitochondrial Functions at the Kidney Filtration Barrier

    No full text
    Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondria inner membrane. Loss of the stomatin/PHB/flotitlin/HflK/C (SPFH) domain containing protein PHB2 causes mitochondrial dysfunction and defective mitochondria-mediated signaling, which is implicated in a variety of human diseases, including progressive renal disease. Here, we provide evidence of additional, extra-mitochondria functions of this membrane-anchored protein. Immunofluorescence and immunogold labeling detected PHB2 at mitochondria membranes and at the slit diaphragm, a specialized cell junction at the filtration slit of glomerular podocytes. PHB2 coprecipitated with podocin, another SPFH domain-containing protein, essential for the assembly of the slit diaphragm protein-Lipid supercomplex. Consistent with an evolutionarily conserved extra-mitochondria function, the ortholog of PHB2 in Caenorhabditis elegans was also not restricted to mitochondria but colocalized with the mechanosensory complex that requires the podocin ortholog MEC2 for assembly. Knockdown of phb-2 partially phenocopied Loss of mec-2 in touch neurons of the nematode, resulting in impaired gentle touch sensitivity. Collectively, these data indicate that, besides its established role in mitochondria, PHB2 may have an additional function in conserved protein lipid complexes at the plasma membrane
    corecore