12,573 research outputs found
Maximal supersymmetry and exceptional groups
The article is a tribute to my old mentor, collaborator and friend Murray
Gell-Mann. In it I describe work by Pierre Ramond, Sung-Soo Kim and myself
where we describe the N = 8 Supergravity in the light-cone formalism. We show
how the Cremmer-Julia E7(7) non-linear symmetry is implemented and how the full
supermultiplet is a representation of the E7(7) symmetry. I also show how the
E7(7) symmetry is a key to understand the higher order couplings in the theory
and is very useful when we discuss possible counterterms for this theory.Comment: Proceedings of Conference in Honour of Murray Gell-Mann's 80th
Birthda
A relativistic treatment of pion wave functions in the annihilation antiproton-proton -> pi^-pi^+
Quark model intrinsic wave functions of highly energetic pions in the
reaction \bar pp->\pi^-\pi^+ are subjected to a relativistic treatment. The
annihilation is described in a constituent quark model with A2 and R2
flavor-flux topology and the annihilated quark-antiquark pairs are in 3P_0 and
3S_1 states. We study the effects of pure Lorentz transformations on the
antiquark and quark spatial wave functions and their respective spinors in the
pion. The modified quark geometry of the pion has considerable impact on the
angular dependence of the annihilation mechanisms.Comment: 10 pages in revtex format, 3 figure
How massless are massless fields in
Massless fields of generic Young symmetry type in space are analyzed.
It is demonstrated that in contrast to massless fields in Minkowski space whose
physical degrees of freedom transform in irreps of algebra,
massless mixed symmetry fields reduce to a number of irreps of
algebra. From the field theory perspective this means that not every massless
field in flat space admits a deformation to with the same number of
degrees of freedom, because it is impossible to keep all of the flat space
gauge symmetries unbroken in the AdS space. An equivalent statement is that,
generic irreducible AdS massless fields reduce to certain reducible sets of
massless fields in the flat limit. A conjecture on the general pattern of the
flat space limit of a general massless field is made. The example of
the three-cell ``hook'' Young diagram is discussed in detail. In particular, it
is shown that only a combination of the three-cell flat-space field with a
graviton-like field admits a smooth deformation to .Comment: 23 pages, LaTeX, a few typos correcte
Theory for Magnetism and Triplet Superconductivity in LiFeAs
Superconducting pnictides are widely found to feature spin-singlet pairing in
the vicinity of an antiferromagnetic phase, for which nesting between electron
and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by
(i) poor nesting properties and (ii) unusually shallow hole pockets.
Investigating magnetic and pairing instabilities in an electronic model that
incorporates these differences, we find antiferromagnetic order to be absent.
Instead we observe almost ferromagnetic fluctuations which drive an instability
toward spin-triplet p-wave superconductivity.Comment: Published versio
Three-body model calculations for 16C nucleus
We apply a three-body model consisting of two valence neutrons and the core
nucleus C in order to investigate the ground state properties and the
electronic quadrupole transition of the C nucleus. The discretized
continuum spectrum within a large box is taken into account by using a
single-particle basis obtained from a Woods-Saxon potential. The calculated
B(E2) value from the first 2 state to the ground state shows good agreement
with the observed data with the core polarization charge which reproduces the
experimental B(E2) value for C. We also show that the present
calculation well accounts for the longitudinal momentum distribution of
C fragment from the breakup of C nucleus. We point out that the
dominant ( configuration in the ground state of C plays a
crucial role for these agreement.Comment: 5 pages, 3 figures, 3 table
Prof. Ikeda’s important contributions to nuclear physics
Professor Ikeda has made many fundamental contributions to nuclear physics, especially to the theory of Gamow-Teller giant resonances, to nuclear cluster physics, to hypernuclear physics, and to the physics of neutron-rich nuclei. He also has played an important role in the education of young researchers in Japan and on the contacts between theoreticians and experimentalists
- …