595 research outputs found

    COMEDY, CAMARADERIE, AND CONFLICT: USING HUMOR TO DEFUSE DISPUTES AMONG FRIENDS

    Get PDF
    This study sought to examine the role humor plays in defusing conflict between friends from an evolutionary perspective. Although a vast amount of research exists on humor, friendship, and conflict, no single study connects all three of these concepts together. This study attempted to fill this gap by examining how different humor styles used between friends in times of conflict relate to friendship satisfaction and life satisfaction. Specifically, the hypotheses predicted that friends who use affiliative humor to deescalate conflict are more inclined to report higher relational satisfaction and improved individual well-being than friends who use maladaptive humor to deescalate conflict. Seventy-four participants completed this study. The responses were collected in a cross-sectional questionnaire data with Qualtrics. The hypotheses were tested with a multiple regression model. The first hypothesis was supported, as the results indicated that adaptive humor led to higher levels of relational satisfaction and maladaptive humor, on the other hand, led to lower levels of relational satisfaction. H2 and H3 were not supported. H2 found zero correlation between adaptive humor and life satisfaction and a weak negative correlation between maladaptive humor and life satisfaction. H3 was unsupported because there was no statistical significance between adaptive humor or maladaptive humor on life satisfaction as a function of relational satisfaction. Implications and future directions are discussed as well, with the results of this study contributing both practical and theoretical knowledge to the fields of friendship, conflict, and humor

    Universal Design: Planning and Design for All

    Get PDF
    [Excerpt] This report attempts to develop and illustrate the concept of universal design. The aim of universal design is to develop theory, principles and solutions to enable everybody to use the same physical solutions to the greatest extent possible, whether it be buildings, outdoor-areas, means of communication or household goods. Universal design opposes, ideologically and politically, all unnecessary and stigmatizing specialized solutions, whether they are intended for people with disabilities or other groups of the population. Equal status, equal treatment and equal merit are key concepts. The discussion in this report covers extensive spheres such as planning, architecture and product design. One may object that we try to cover too large an area within a relatively brief report. It is therefore important to emphasise that our main intention is to include more professionals and politicians in the further discussion of universal design or design for all

    A Fluid Dynamics Calculation of Sputtering from a Cylindrical Thermal Spike

    Full text link
    The sputtering yield, Y, from a cylindrical thermal spike is calculated using a two dimensional fluid dynamics model which includes the transport of energy, momentum and mass. The results show that the high pressure built-up within the spike causes the hot core to perform a rapid expansion both laterally and upwards. This expansion appears to play a significant role in the sputtering process. It is responsible for the ejection of mass from the surface and causes fast cooling of the cascade. The competition between these effects accounts for the nearly linear dependence of YY with the deposited energy per unit depth that was observed in recent Molecular Dynamics simulations. Based on this we describe the conditions for attaining a linear yield at high excitation densities and give a simple model for this yield.Comment: 10 pages, 9 pages (including 9 figures), submitted to PR

    Crater formation by fast ions: comparison of experiment with Molecular Dynamics simulations

    Full text link
    An incident fast ion in the electronic stopping regime produces a track of excitations which can lead to particle ejection and cratering. Molecular Dynamics simulations of the evolution of the deposited energy were used to study the resulting crater morphology as a function of the excitation density in a cylindrical track for large angle of incidence with respect to the surface normal. Surprisingly, the overall behavior is shown to be similar to that seen in the experimental data for crater formation in polymers. However, the simulations give greater insight into the cratering process. The threshold for crater formation occurs when the excitation density approaches the cohesive energy density, and a crater rim is formed at about six times that energy density. The crater length scales roughly as the square root of the electronic stopping power, and the crater width and depth seem to saturate for the largest energy densities considered here. The number of ejected particles, the sputtering yield, is shown to be much smaller than simple estimates based on crater size unless the full crater morphology is considered. Therefore, crater size can not easily be used to estimate the sputtering yield.Comment: LaTeX, 7 pages, 5 EPS figures. For related figures/movies, see: http://dirac.ms.virginia.edu/~emb3t/craters/craters.html New version uploaded 5/16/01, with minor text changes + new figure

    Nanoscale simulations of materials with defects

    Get PDF
    Las propiedades a la nanoescala tienen una influencia significativa en el comportamiento de los materiales a la macroescala. Las propiedades mecánicas, por ejemplo, están parcialmente determinadas por la generación y acumulación de defectos a la nanoescala como dislocaciones, precipitados, porosidad e interfaces. Para este proyecto en particular, esperamos mejorar materiales utilizando simulaciones, principalmente dinámica molecular clásica (Molecular dynamics, MD), para obtener la respuesta mecánica de varios tipos de nanosistemas con defectos, incluyendo modificaciones debidas a irradiación. Se estudiarán distintos nanomateriales, incluyendo materiales basados en carbono (grafeno, carbono amorfo, etc.), óxidos (sílica y óxidos metálicos), y nanomateriales metálicos como nanoalambres y nanopartículas), para poder desarrollar modelos de cómo los defectos afectan las propiedades mecánicas en el régimen elástico y el régimen plástico. Se van a considerar materiales con defectos pre-existentes, incluyendo defectos producidos por irradiación, que puedan cambiar las propiedades mecánicas. Esto requiere la simulación del proceso de irradiación, considerando irradiación por láser y por iones, e incluyendo a bombardeo con nanopartículas. Para cada uno de los materiales de interés se va a simular el proceso de deformación. Resultados experimentales de nuestros colaboradores internacionales van a contribuir a verificar la validez de nuestras simulaciones y proveer una guía para probar nuevos escenarios. Estos estudios van a reforzar la investigación a nivel local y nacional, contribuyendo a la formación de recursos humanos en el área de nanociencia a nivel de grado y posgrado.Nanoscale properties might have a significant influence in the behavior of materials at the macroscale. For instance, mechanical properties are partially determined by the generation and accumulation of nanoscale defects, such as dislocations, precipitates, porosity and interfaces. For this particular project, we are aiming to improve materials using simulations, mostly classical molecular dynamics (MD) simulations, to obtain the mechanical response of several types of nanosystems with defects, including modifications due to irradiation. We will study several different nanomaterials, including carbon-based materials (graphene, amorphous carbon, etc.), oxides (silica and metallic oxides), and metallic nanomaterials (nanowires, nanoclusters, etc.), in order to develop models of how defects affect mechanical properties (elastic and plastic behavior). We will consider materials with pre-existing defects, including irradiation-induced defects which can change mechanical properties. This will in turn require modeling the irradiation stage, considering laser and ion bombardment, including cluster bombardment. For each of the materials of interest we will carry mechanical load simulations. Experimental results from our international collaborators will validate simulations and provide guidance for testing of novel scenarios. These studies will strengthen local and national research, helping the formation of graduate and postgraduate human resources in the area of nanoscience

    Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation

    Get PDF
    Organic molecules may be adsorbed on the ice surfaces of comets or moons. We study the desorption process induced by swift-heavy ion irradiation using a molecular dynamics simulation. Focusing on the amino acid glycine adsorbed on water ice as a prototypical example, we model a 2 MeV sulfur ion impact as it might be typical of magnetospheric ion impact on the surface of Europa. We find that molecules are ejected intact within a radius of up to 25 Å around the ion impact point. Within a core region of around 10 Å, glycine molecules are destroyed and mainly fragments are emitted. Prominent fragments produced are cyanide CN-, carbon monoxide CO, cyanate OCN-, and carbon dioxide CO2, in agreement with experimental studies. In addition, radiolysis of water ice generates the radicals H+, H3O+, and HO- as well as the gases H2, O2, and some H2O2. While the smaller fragments easily obtain velocities above 2 km s-1 - the escape velocity from Europa - most ejected glycine molecules obtain smaller velocities and will thus not leave the moon permanently. Our results thus provide a detailed example that shows to what extent intact emission of organic molecules from Europa's surface by ion irradiation is possible and may be used for modeling the height distribution of ejecta in Europa's exosphere.Fil: Anders, Christian. Technische Universität Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Urbassek, Herbert M.. Technische Universität Kaiserslautern; Alemani

    Coulomb Explosion and Thermal Spikes

    Full text link
    A fast ion penetrating a solid creates a track of excitations. This can produce displacements seen as an etched track, a process initially used to detect energetic particles but now used to alter materials. From the seminal papers by Fleischer et al. [Phys. Rev. 156, 353 (1967)] to the present [C. Trautmann, S. Klaumunzer and H. Trinkaus, Phys. Rev. Lett. 85, 3648 (2000)], `Coulomb explosion' and thermal spike models are treated as conflicting models for describing ion track effects. Here molecular dynamics simulations of electronic-sputtering, a surface manifestation of ion track formation, show that `Coulomb explosion' produces a `heat' spike so that these are early and late aspects of the same process. Therefore, differences in scaling are due to the use of incomplete spike models.Comment: Submitted to PRL. 4 pages, 3 figures. For related movies see: http://dirac.ms.virginia.edu/~emb3t/coulomb/coulomb.html PACS added in new versio
    corecore