31 research outputs found

    Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers

    Get PDF
    Turnover of actin filaments in cells requires rapid actin disassembly in a cytoplasmic environment that thermodynamically favors assembly because of high concentrations of polymerizable monomers. We here image the disassembly of single actin filaments by cofilin, coronin, and actin-interacting protein 1, a purified protein system that reconstitutes rapid, monomer-insensitive disassembly (Brieher, W.M., H.Y. Kueh, B.A. Ballif, and T.J. Mitchison. 2006. J. Cell Biol. 175:315–324). In this three-component system, filaments disassemble in abrupt bursts that initiate preferentially, but not exclusively, from both filament ends. Bursting disassembly generates unstable reaction intermediates with lowered affinity for CapZ at barbed ends. CapZ and cytochalasin D (CytoD), a barbed-end capping drug, strongly inhibit bursting disassembly. CytoD also inhibits actin disassembly in mammalian cells, whereas latrunculin B, a monomer sequestering drug, does not. We propose that bursts of disassembly arise from cooperative separation of the two filament strands near an end. The differential effects of drugs in cells argue for physiological relevance of this new disassembly pathway and potentially explain discordant results previously found with these drugs

    Rapid actin monomer–insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1

    Get PDF
    Actin filaments in cells depolymerize rapidly despite the presence of high concentrations of polymerizable G actin. Cofilin is recognized as a key regulator that promotes actin depolymerization. In this study, we show that although pure cofilin can disassemble Listeria monocytogenes actin comet tails, it cannot efficiently disassemble comet tails in the presence of polymerizable actin. Thymus extracts also rapidly disassemble comet tails, and this reaction is more efficient than pure cofilin when normalized to cofilin concentration. By biochemical fractionation, we identify Aip1 and coronin as two proteins present in thymus extract that facilitate the cofilin-mediated disassembly of Listeria comet tails. Together, coronin and Aip1 lower the amount of cofilin required to disassemble the comet tail and permit even low concentrations of cofilin to depolymerize actin in the presence of polymerizable G actin. The cooperative activities of cofilin, coronin, and Aip1 should provide a biochemical basis for understanding how actin filaments can grow in some places in the cell while shrinking in others

    Regulation and integrated functions of the actin cytoskeleton

    No full text

    Cadherin junctions and their cytoskeleton(s)

    No full text
    Classical cadherin adhesion receptors exert many of their biological effects through close cooperation with the cytoskeleton. Much attention has focused on attempting to understand the physical interactions between cadherin molecular complexes and cortical actin filaments. In this review we aim to draw attention to other issues that highlight the diverse and dynamic cytoskeletons that contribute to cadherin function. First, we discuss the regulation of actin filament dynamics in the cadherin-based junctional cytoskeleton, focusing on the emerging role of Arp2/3 as a junctional actin nucleator and its implications for actin homeostasis at junctions. Second, we review recent developments in understanding the impact of microtubules on cadherin function. Together, these emphasize that cadherins cooperate with multiple dynamic cytoskeletal networks at cell–cell junctions
    corecore