44 research outputs found

    Combinatorial Histone Readout by the Dual Plant Homeodomain (PHD) Fingers of Rco1 Mediates Rpd3S Chromatin Recruitment and the Maintenance of Transcriptional Fidelity

    Get PDF
    The plant homeodomain (PHD) finger is found in many chromatin-associated proteins and functions to recruit effector proteins to chromatin through its ability to bind both methylated and unmethylated histone residues. Here, we show that the dual PHD fingers of Rco1, a member of the Rpd3S histone deacetylase complex recruited to transcribing genes, operate in a combinatorial manner in targeting the Rpd3S complex to histone H3 in chromatin. Although mutations in either the first or second PHD finger allow for Rpd3S complex formation, the assembled complexes from these mutants cannot recognize nucleosomes or function to maintain chromatin structure and prevent cryptic transcriptional initiation from within transcribed regions. Taken together, our findings establish a critical role of combinatorial readout in maintaining chromatin organization and in enforcing the transcriptional fidelity of genes

    A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations

    Get PDF
    Trio exome sequencing has been successful in identifying genes with de novo mutations (DNMs) causing epileptic encephalopathy (EE) and other neurodevelopmental disorders. Here, we evaluate how well a case-control collapsing analysis recovers genes causing dominant forms of EE originally implicated by DNM analysis. We performed a genome-wide search for an enrichment of "qualifying variants" in protein-coding genes in 488 unrelated cases compared to 12,151 unrelated controls. These "qualifying variants" were selected to be extremely rare variants predicted to functionally impact the protein to enrich for likely pathogenic variants. Despite modest sample size, three known EE genes (KCNT1, SCN2A, and STXBP1) achieved genome-wide significance (p<2.68×10−6). In addition, six of the 10 most significantly associated genes are known EE genes, and the majority of the known EE genes (17 out of 25) originally implicated in trio sequencing are nominally significant (p<0.05), a proportion significantly higher than the expected (Fisher’s exact p = 2.33×10−17). Our results indicate that a case-control collapsing analysis can identify several of the EE genes originally implicated in trio sequencing studies, and clearly show that additional genes would be implicated with larger sample sizes. The case-control analysis not only makes discovery easier and more economical in early onset disorders, particularly when large cohorts are available, but also supports the use of this approach to identify genes in diseases that present later in life when parents are not readily available

    Association of ultra-rare coding variants with genetic generalized epilepsy: A case\u2013control whole exome sequencing study

    Get PDF
    Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case\u2013control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18&nbsp;834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19&nbsp;genes encoding \u3b3-aminobutyric acid type A [GABAA] receptors, 113&nbsp;genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p&nbsp;=&nbsp;1.8&nbsp; 7&nbsp;10 125), approaching study-wide significance in familial GGE (p&nbsp;=&nbsp;3.0&nbsp; 7&nbsp;10 126), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR]&nbsp;=&nbsp;3.9, 95% confidence interval [CI]&nbsp;=&nbsp;1.9\u20137.8, false discovery rate [FDR]-adjusted p&nbsp;=.0024), whereas their association with sporadic GGE had marginally lower odds (OR&nbsp;=&nbsp;3.1, 95% CI&nbsp;=&nbsp;1.3\u20136.7, FDR-adjusted p&nbsp;=.022). URVs in GABAergic pathway genes were associated with familial GGE (OR&nbsp;=&nbsp;1.8, 95% CI&nbsp;=&nbsp;1.3\u20132.5, FDR-adjusted p&nbsp;=.0024) but not with sporadic GGE (OR&nbsp;=&nbsp;1.3, 95% CI&nbsp;=.9\u20131.9, FDR-adjusted p&nbsp;=.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE

    Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    Get PDF
    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox–Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient–parent trios that were generally prescreened for rare metabolic disorders. In the current sample, our rare variant transmission disequilibrium test did not identify individual genes with significantly distorted transmission over expectation after correcting for the multiple tests. While the rare variant transmission disequilibrium test did not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Ultra-rare genetic variation in common epilepsies: a case-control sequencing study

    Get PDF
    BACKGROUND:Despite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies. METHODS:We did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies. FINDINGS:We separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7-3·2, p=9·1 × 10-8; familial non-acquired focal epilepsy 3·6, 2·7-4·9, p=1·1 × 10-17). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting for the control carrier rate, we estimate that these five genes contribute to the risk of epilepsy in approximately 8% of individuals with familial non-acquired focal epilepsy. Our analyses showed that no individual gene was significantly associated with familial genetic generalised epilepsy; however, known epilepsy genes had lower p values relative to the rest of the protein-coding genes (p=5·8 × 10-8) that were lower than expected from a random sampling of genes. INTERPRETATION:We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear connection between the genetics of common and rare, severe epilepsies, and shows that the variants responsible for epilepsy risk are exceptionally rare in the general population. Our results suggest that the emerging paradigm of targeting of treatments to the genetic cause in rare devastating epilepsies might also extend to a proportion of common epilepsies. These findings might allow clinicians to broadly explain the cause of these syndromes to patients, and lay the foundation for possible precision treatments in the future. FUNDING:National Institute of Neurological Disorders and Stroke (NINDS), and Epilepsy Research UK

    From Exploration to Instruction: Children Learn From Exploration and Tailor Their Demonstrations to Observers’ Goals and Competence

    No full text
    This study investigated whether children learn from exploration and act as effective informants by providing informative demonstrations tailored to observers’ goals and competence. Children (4.0–6.9 years, N = 98) explored a causally ambiguous toy to discover its causal structure and then demonstrated the toy to a naive observer. Children provided more costly and informative evidence when the observer wanted to learn about the toy than observe its effects (Experiment 1) and when the observer was ordinary than exceptionally intelligent (Experiment 2). Relative to the evidence they generated during exploration, children produced fewer, less costly actions when the observer wanted or needed less evidence. Children understand the difference between acting‐to‐learn and acting‐to‐inform; after learning from exploration, they consider others’ goals and competence to provide “uninstructed instruction”.National Science Foundation (Grant CCF‐1231216

    In Pursuit of Knowledge: Preschoolers Expect Agents to Weigh Information Gain and Information Cost When Deciding Whether to Explore

    No full text
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/170258/1/cdev13557.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/170258/2/cdev13557_am.pd
    corecore