303 research outputs found

    The experience of linking Victorian emergency medical service trauma data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The linking of a large Emergency Medical Service (EMS) dataset with the Victorian Department of Human Services (DHS) hospital datasets and Victorian State Trauma Outcome Registry and Monitoring (VSTORM) dataset to determine patient outcomes has not previously been undertaken in Victoria. The objective of this study was to identify the linkage rate of a large EMS trauma dataset with the Department of Human Services hospital datasets and VSTORM dataset.</p> <p>Methods</p> <p>The linking of an EMS trauma dataset to the hospital datasets utilised deterministic and probabilistic matching. The linking of three EMS trauma datasets to the VSTORM dataset utilised deterministic, probabilistic and manual matching.</p> <p>Results</p> <p>There were 66.7% of patients from the EMS dataset located in the VEMD. There were 96% of patients located in the VAED who were defined in the VEMD as being admitted to hospital. 3.7% of patients located in the VAED could not be found in the VEMD due to hospitals not reporting to the VEMD. For the EMS datasets, there was a 146% increase in successful links with the trauma profile dataset, a 221% increase in successful links with the mechanism of injury only dataset, and a 46% increase with sudden deterioration dataset, to VSTORM when using manual compared to deterministic matching.</p> <p>Conclusion</p> <p>This study has demonstrated that EMS data can be successfully linked to other health related datasets using deterministic and probabilistic matching with varying levels of success. The quality of EMS data needs to be improved to ensure better linkage success rates with other health related datasets.</p

    A Proposal for a Near Detector Experiment on the Booster Neutrino Beamline: FINeSSE: Fermilab Intense Neutrino Scattering Scintillator Experiment

    Get PDF
    219 pages219 pagesUnderstanding the quark and gluon substructure of the nucleon has been a prime goal of both nuclear and particle physics for more than thirty years and has led to much of the progress in strong interaction physics. Still the flavor dependence of the nucleon's spin is a significant fundamental question that is not understood. Experiments measuring the spin content of the nucleon have reported conflicting results on the amount of nucleon spin carried by strange quarks. Quasi-elastic neutrino scattering, observed using a novel detection technique, provides a theoretically clean measure of this quantity. The optimum neutrino beam energy needed to measure the strange spin of the nucleon is 1 GeV. This is also an ideal energy to search for neutrino oscillations at high Δm2\Delta m^2 in an astrophysically interesting region. Models of the r-process in supernovae which include high-mass sterile neutrinos may explain the abundance of neutron-rich heavy metals in the universe. These high-mass sterile neutrinos are outside the sensitivity region of any previous neutrino oscillation experiments. The Booster neutrino beamline at Fermilab provides the world's highest intensity neutrino beam in the 0.5-1.0 GeV energy range, a range ideal for both of these measurements. A small detector located upstream of the MiniBooNE detector, 100 m from the recently commissioned Booster neutrino source, could definitively measure the strange quark contribution to the nucleon spin. This detector, in conjunction with the MiniBooNE detector, could also investigate νμ\nu_{\mu} disappearance in a currently unexplored, cosmologically interesting region

    Resolving the fibrotic niche of human liver cirrhosis at single-cell level.

    Get PDF
    Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.Includes Wellcome, BHF, MRC, BBSRC and NIHR

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding
    corecore