784 research outputs found

    Three-particle systems with resonant subprocesses in a finite volume

    Get PDF
    In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest. As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical interpretation, and we show how these are related to the physical three-to-three scattering amplitude by integral equations. This work opens the door to study processes such as a2→ρπ→πππa_2 \to \rho \pi \to \pi \pi \pi, in which the ρ\rho is rigorously treated as a resonance state.Comment: 46 pages, 9 figures, JLAB-THY-18-2819, CERN-TH-2018-21

    Numerical study of the relativistic three-body quantization condition in the isotropic approximation

    Get PDF
    We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized ss-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3\mathcal K_{\text{df},3}, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L1/L expansion of the threshold state, the volume dependence of three-particle bound-state energies, and the Bethe-Salpeter wavefunctions for these bound states. We also find that certain values of Kdf,3\mathcal K_{\text{df},3} lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.Comment: 32 pages, 21 figures, JLAB-THY-18-2657, CERN-TH-2018-046; version 2: corrected typos, updated references, minor stylistic changes---consistent with published versio

    Progress in three-particle scattering from LQCD

    Full text link
    We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD). The method relies on relating the discrete finite-volume spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.Comment: 9 pages, 3 figures, proceedings for XIIth Quark Confinement and the Hadron Spectrum (CONF12

    Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism

    Get PDF
    In a previous publication, two of us derived a relation between the scattering amplitude of three identical bosons, M3\mathcal M_3, and a real function referred to as the {divergence-free} K matrix and denoted Kdf,3\mathcal K_{\text{df},3}. The result arose in the context of a relation between finite-volume energies and Kdf,3\mathcal K_{\text{df},3}, derived to all orders in the perturbative expansion of a generic low-energy effective field theory. In this work we set aside the role of the finite volume and focus on the infinite-volume relation between Kdf,3\mathcal K_{\text{df},3} and M3\mathcal M_3. We show that, for any real choice of Kdf,3\mathcal K_{\text{df},3}, M3\mathcal M_3 satisfies the three-particle unitarity constraint to all orders. Given that Kdf,3\mathcal K_{\text{df},3} is also free of a class of kinematic divergences, the function may provide a useful tool for parametrizing three-body scattering data. Applications include the phenomenological analysis of experimental data (where the connection to the finite volume is irrelevant) as well as calculations in lattice quantum chromodynamics (where the volume plays a key role).Comment: 19 pages, 4 figures, JLAB-THY-19-2945, CERN-TH-2019-07

    Progress report on the relativistic three-particle quantization condition

    Get PDF
    We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Brice\~no, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.Comment: 7 pages, 1 figure, Proceedings of Lattice 201

    Three-Particle Systems With Resonant Subprocesses in a Finite Volume

    Get PDF
    In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015); R. A. Briceño et al., Phys. Rev. D 95, 074510 (2017).]. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest. As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical interpretation, and we show how these are related to the physical three-to-three scattering amplitude by integral equations. This work opens the door to study processes such as a2→ρπ→πππ, in which the ρ is rigorously treated as a resonance state

    Solving Relativistic Three-Body Integral Equations in the Presence of Bound States and Resonances

    Get PDF
    Three-body interactions play an important role throughout modern-day particle, nuclear, and hadronic physics; many experimentally observed reactions of interest for testing the Standard Model result in final states composed of three particles or more. Due to these issues, a full description of three-body interactions from Quantum Chromodynamics is required. The focus of this project was to extend previous results for a two-body subsystem with a bound state to include resonance channels. We first derived a novel single-variable observable, denoted as an intensity distribution, which is proportional to the probability density of the three-body scattering amplitude. We explored this distribution in the context of established results for a two-body subsystem with a bound state. We then developed a model two-body scattering amplitude with both a resonant and a bound state and examined the three-body scattering intensity distribution for this system. For each of these two-body scattering subsystem models, intensity distributions were computed, resulting in novel graphs of relevant scattering behavior.https://digitalcommons.odu.edu/reu2021_physics/1000/thumbnail.jp

    Efeito do desfolhamento causado por Brassolis sophorae em coqueiros sobre a produção de albĂșmen fresco dos frutos.

    Get PDF
    Publicado tambĂ©m: FRAZÃO, D. A. C.; HOMMA, A. K. O; VIÉGAS, I. de J. M. (Ed.). Contribuição ao desenvolvimento da fruticultura na AmazĂŽnia. BelĂ©m, PA: Embrapa AmazĂŽnia Oriental, 2006. p. 325-330

    Numerical Study of the Relativistic Three-Body Quantization Condition in the Isotropic Approximation

    Get PDF
    We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized s-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L expansion of the threshold state, the volume dependence of three-particle bound-state energies, and the Bethe-Salpeter wave functions for these bound states. We also find that certain values of Kdf;3 lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts

    Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors

    Full text link
    We present the results of a calculation of the positive-parity ground-state charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The calculation uses a relativistic heavy-quark action for the valence charm quark, clover-Wilson fermions for the valence light and strange quarks, and HISQ sea quarks. The spectrum is calculated with a lightest pion mass around 220 MeV, and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used to extrapolate to the continuum. The light-quark mass extrapolation is performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at next-to-leading order in the heavy-quark mass. For the well-measured charmed baryons, our results show consistency with the experimental values. For the controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics, fitting-window systematic, and systematics from other lattice artifacts, such as lattice scale setting and pion-mass determination), which shows a 1.7 sigma deviation from the experimental value. We predict the yet-to-be-discovered doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV, 3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure
    • 

    corecore