3,609 research outputs found

    Hard x ray highlights of AR 5395

    Get PDF
    Active Region 5395 produced an exceptional series of hard x ray bursts notable for their frequency, intensity, and impulsivity. Over the two weeks from March 6 to 19, 447 hard x ray flares were observed by the Hard X Ray Burst Spectrometer on Solar Maximum Mission (HXRBS/SMM), a rate of approx. 35 per day which exceeded the previous high by more than 50 percent. During one 5 day stretch, more than 250 flares were detected, also a new high. The three largest GOES X-flares were observed by HXRBS and had hard x ray rates over 100,000 s(exp -1) compared with only ten flares above 100,000(exp -1) during the previous nine years of the mission. An ongoing effort for the HXRBS group has been the correlated analysis of hard x ray data with flare data at other wavelengths with the most recent emphasis on those measurements with spatial information. During a series of bursts from AR 5395 at 1644 to 1648 UT on 12 March 1989, simultaneous observations were made by HXRBS and UVSP (Ultra Violet Spectrometer Polarimeter) on SMM, the two-element Owens Valley Radio Observatory (OVRO) interferometric array, and R. Canfield's H-alpha Echelle spectrograph at the National Solar Observatory at Sacramento Peak. The data show strong correlations in the hard x ray, microwave, and UV lightcurves. This event will be the subject of a combined analysis

    Double Coronal Hard and Soft X-ray Source Observed by RHESSI: Evidence for Magnetic Reconnection and Particle Acceleration in Solar Flares

    Full text link
    We present data analysis and interpretation of an M1.4-class flare observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on April 30, 2002. This event, with its footpoints occulted by the solar limb, exhibits a rarely observed, but theoretically expected, double-source structure in the corona. The two coronal sources, observed over the 6-30 keV range, appear at different altitudes and show energy-dependent structures with the higher-energy emission being closer together. Spectral analysis implies that the emission at higher energies in the inner region between the two sources is mainly nonthermal, while the emission at lower energies in the outer region is primarily thermal. The two sources are both visible for about 12 minutes and have similar light curves and power-law spectra above about 20 keV. These observations suggest that the magnetic reconnection site lies between the two sources. Bi-directional outflows of the released energy in the form of turbulence and/or particles from the reconnection site can be the source of the observed radiation. The spatially resolved thermal emission below about 15 keV, on the other hand, indicates that the lower source has a larger emission measure but a lower temperature than the upper source. This is likely the result of the differences in the magnetic field and plasma density of the two sources.Comment: Accepted by ApJ (12/06/2007), scheduled for the 03/20/2008 Vol. 676 No. 1 Issue, 13 pages, 9 figure

    Extended HXR Sources - Albedo Patches or Coronal Sources

    Get PDF
    Extended HXR sources in the presence of compact footpoints have been reported based on visibility amplitudes from different detectors. Attempts have been made to determine the location and extent of these sources through direct imaging. Results of this work will be described for simulated sources and for specific flares at different solar longitudes, with a discussion of the possible nature of the extended sources as either albedo patches or coronal sources or a combination of the two

    A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    Get PDF
    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data

    Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/CME Eruptive Event

    Full text link
    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI lightcurves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments onboard STEREO-Behind showed that this process occurred during the acceleration phase of the associated CME. From wavelet-enhanced EUVI, images evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation and subsequent particle acceleration due to the tearing mode instability during current sheet formation.Comment: 8 pages, 9 figures, ApJ (Accepted

    Closing Thoughts on “Information Systems Research: Thinking Outside the Basket and Beyond the Journal”

    Get PDF
    This essay provides a rejoinder by the original authors to the set of responses to Fitzgerald, B., Dennis, A. R., An, J., Tsutsui, S., & Muchala, R. C. (2019). Information systems research: Thinking outside the basket and beyond the journal. Communications of the Association for Information Systems, 45, 110-133

    Detection of 3-Minute Oscillations in Full-Disk Lyα\alpha Emission During A Solar Flare

    Get PDF
    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a \sim3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600\AA\ and 1700\AA\ channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.Comment: 6 pages, 5 figures. Accepted for publication in Astrophysics Journal Letter

    Velocity Characteristics of Evaporated Plasma Using Hinode/EIS

    Get PDF
    This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with HXR observations from RHESSI. The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T=0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v_up) was found to scale with temperature as v_up (km s^-1)~8-18 T (MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s^-1, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v_down (km s^-1)~60-17 T (MK) and was interpreted as the downward-moving `plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be >5x10^10 ergs cm^-2 s^-1 consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.Comment: 9 pages, 7 figures, 1 table, ApJ (Accepted

    Development of a high-speed H-alpha camera system for the observation of rapid fluctuations in solar flares

    Get PDF
    A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production
    corecore