20 research outputs found
Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases
The impact of vaccine type and booster dose on the magnitude and breadth of SARS-CoV-2-specific systemic and mucosal antibodies among COVID-19 vaccine recipients
The COVID-19 pandemic has had a major impact on global health and economy, which was significantly mitigated by the availability of COVID-19 vaccines. The levels of systemic and mucosal antibodies against SARS-CoV-2 correlated with protection. However, there is limited data on how vaccine type and booster doses affect mucosal antibody response, and how the breadth of mucosal and systemic antibodies compares. In this cross-sectional study, we compared the magnitude and breadth of mucosal and systemic antibodies in 108 individuals who received either the BNT162b2 (Pfizer) or CoronaVac (SinoVac) vaccine. We found that BNT162b2 (vs CoronaVac) or booster doses (vs two doses) were significantly associated with higher serum IgG levels, but were not significantly associated with salivary IgA levels, regardless of prior infection status. Among non-infected individuals, serum IgG, serum IgA and salivary IgG levels were significantly higher against the ancestral strain than the Omicron BA.2 sublineage, but salivary IgA levels did not differ between the strains. Salivary IgA had the weakest correlation with serum IgG (r = 0.34) compared with salivary IgG (r = 0.63) and serum IgA (r = 0.60). Our findings suggest that intramuscular COVID-19 vaccines elicit a distinct mucosal IgA response that differs from the systemic IgG response. As mucosal IgA independently correlates with protection, vaccine trials should include mucosal IgA as an outcome measure
Characterizing fitness and immune escape of SARS-CoV-2 EG.5 sublineage using elderly serum and nasal organoid
Summary: SARS-CoV-2 Omicron variant has evolved into sublineages. Here, we compared the neutralization susceptibility and viral fitness of EG.5.1 and XBB.1.9.1. Serum neutralization antibody titer against EG.5.1 was 1.71-fold lower than that for XBB.1.9.1. However, there was no significant difference in virus replication between EG.5.1 and XBB.1.9.1 in human nasal organoids and TMPRSS2/ACE2 over-expressing A549 cells. No significant difference was observed in competitive fitness and cytokine/chemokine response between EG.5.1 and XBB.1.9.1. Both EG.5.1 and XBB.1.9.1 replicated more robustly in the nasal organoid from a younger adult than that from an older adult. Our findings suggest that enhanced immune escape contributes to the dominance of EG.5.1 over earlier sublineages. The combination of population serum susceptibility testing and viral fitness evaluation with nasal organoids may hold promise in risk assessment of upcoming variants. Utilization of serum specimens and nasal organoid derived from older adults provides a targeted risk assessment for this vulnerable population
Genome-Wide DNA Methylation Analysis of Chinese Patients with Systemic Lupus Erythematosus Identified Hypomethylation in Genes Related to the Type I Interferon Pathway
<div><p>Background</p><p>Epigenetic variants have been shown in recent studies to be important contributors to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report a 2-step study of discovery followed by replication to identify DNA methylation alterations associated with SLE in a Chinese population. Using a genome-wide DNA methylation microarray, the Illumina Infinium HumanMethylation450 BeadChip, we compared the methylation levels of CpG sites in DNA extracted from white blood cells from 12 female Chinese SLE patients and 10 healthy female controls.</p><p>Results</p><p>We identified 36 CpG sites with differential loss of DNA methylation and 8 CpG sites with differential gain of DNA methylation, representing 25 genes and 7 genes, respectively. Surprisingly, 42% of the hypomethylated CpG sites were located in CpG shores, which indicated the functional importance of the loss of DNA methylation. Microarray results were replicated in another cohort of 100 SLE patients and 100 healthy controls by performing bisulfite pyrosequencing of four hypomethylated genes, <i>MX1</i>, <i>IFI44L</i>, <i>NLRC5</i> and <i>PLSCR1</i>. In addition, loss of DNA methylation in these genes was associated with an increase in mRNA expression. Gene ontology analysis revealed that the hypomethylated genes identified in the microarray study were overrepresented in the type I interferon pathway, which has long been implicated in the pathogenesis of SLE.</p><p>Conclusion</p><p>Our epigenetic findings further support the importance of the type I interferon pathway in SLE pathogenesis. Moreover, we showed that the DNA methylation signatures of SLE can be defined in unfractionated white blood cells.</p></div
Co-expression analysis of differentially hypomethylated genes.
<p>The differentially hypomethylated genes found in the 450k microarray study were input into GeneMANIA for co-expression analysis, which revealed that they are related to type I interferon pathways, including “response to type I interferon” (FDR = 1.45e-34), “type I interferon-mediated signaling pathway” (FDR = 1.45e-34) and “cellular response to type I interferon” (FDR = 1.45e-34). Genes identified in these three co-expression pathways are overlapped with each other and are indicated in blue circles. Black circles indicate the differentially hypomethylated genes found in the 450k microarray, whereas circles with alternating black and blue stripes indicate hypomethylated genes that are overrepresented in type 1 interferon pathways.</p
Comparison of the methylation level of four hypomethylated genes between control and SLE patients.
<p>Bisulfite pyrosequencing was carried out on four of the genes that were found to be differentially methylated in the 450k microarray and in a larger cohort of 100 SLE patients and 100 healthy controls. These genes are <i>MX1</i>, <i>IFI44L</i>, <i>NLRC5</i> and <i>PLSCR1</i>. Bisulfite pyrosequencing of all four genes confirmed the microarray findings, showing that SLE patients have a significant loss of methylation when compared to healthy controls.</p
Volcano plot showing DNA methylation data according to genomic distribution.
<p>Blue spots represent CpG sites that are considered to be differentially methylated, fulfilling the requirement of a beta difference > |0.1| and log transformed adjusted p-value > 1.3, whereas red spots represent CpG sites that are not differentially methylated. (A) CpG sites are classified in relation to CpG islands. Most of the differentially methylated probes are located in shores and non-islands. (B) CpG sites are classified in relation to the gene structure, and most of the differentially methylated CpG sites are located in the 5’UTR, 1500 bp upstream of the TSS and in the gene body.</p
Heat map visualization of differentially methylated CpG sites.
<p>Forty-four differentially methylated CpG sites of 10 controls and 12 SLE patients are shown. CpG sites are clustered using Manhattan clustering, and the corresponding gene name of the CpG site is also shown on the left (if any). A scale is shown on the right, in which red and green correspond to a higher and a lower methylation status, respectively.</p
<i>LINE-1</i> methylation level measurement in control and SLE patients.
<p>Bisulfite pyrosequencing was performed for 10 controls and 12 SLE patients on three different CpG sites in <i>LINE-1</i> to determine their average methylation level. There is no significant difference between the average methylation levels of <i>LINE-1</i> in controls and SLE patients.</p
Mitochondrial diseases in Hong Kong: prevalence, clinical characteristics and genetic landscape
Abstract Objective To determine the prevalence of mitochondrial diseases (MD) in Hong Kong (HK) and to evaluate the clinical characteristics and genetic landscape of MD patients in the region. Methods This study retrospectively reviewed the phenotypic and molecular characteristics of MD patients from participating public hospitals in HK between January 1985 to October 2020. Molecularly and/or enzymatically confirmed MD cases of any age were recruited via the Clinical Analysis and Reporting System (CDARS) using relevant keywords and/or International Classification of Disease (ICD) codes under the HK Hospital Authority or through the personal recollection of treating clinicians among the investigators. Results A total of 119 MD patients were recruited and analyzed in the study. The point prevalence of MD in HK was 1.02 in 100,000 people (95% confidence interval 0.81–1.28 in 100,000). 110 patients had molecularly proven MD and the other nine were diagnosed by OXPHOS enzymology analysis or mitochondrial DNA depletion analysis with unknown molecular basis. Pathogenic variants in the mitochondrial genome (72 patients) were more prevalent than those in the nuclear genome (38 patients) in our cohort. The most commonly involved organ system at disease onset was the neurological system, in which developmental delay, seizures or epilepsy, and stroke-like episodes were the most frequently reported presentations. The mortality rate in our cohort was 37%. Conclusion This study is a territory-wide overview of the clinical and genetic characteristics of MD patients in a Chinese population, providing the first available prevalence rate of MD in Hong Kong. The findings of this study aim to facilitate future in-depth evaluation of MD and lay the foundation to establish a local MD registry