135 research outputs found
Recommended from our members
ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury.
The complex molecular microenvironment of the wound bed regulates the duration and degree of inflammation in the wound repair process, while its dysregulation leads to impaired healing. Understanding factors controlling this response provides therapeutic targets for inflammatory disease. Esophageal cancer-related gene 4 (ECRG4) is a candidate chemokine that is highly expressed on leukocytes. We used ECRG4 knockout (KO) mice to establish that the absence of ECRG4 leads to defective neutrophil recruitment with a delay in wound healing. An in vitro human promyelocyte model identified an ECRG4-mediated suppression of the hyaluronic acid receptor, CD44, a key receptor mediating inflammation resolution. In ECRG4 KO mouse leukocytes, there was an increase in CD44 expression, consistent with a model in which ECRG4 negatively regulates CD44 levels. Therefore, we propose a previously unidentified mechanism in which ECRG4 regulates early neutrophil recruitment and subsequent CD44-mediated resolution of inflammation
Recommended from our members
CHRFAM7A expression in mice increases resiliency after injury.
INTRODUCTION: The CHRNA7 gene encodes the α-7 nicotinic acetylcholine receptor (α7nAchR) that regulates anti-inflammatory responses to injury; however, only humans express a variant gene called CHRFAM7A that alters the function of α7nAChR; CHRFAM7A expression predominates in bone marrow and monocytes/macrophages where the CHRFAM7A/CHRNA7 ratio is highly variable between individuals. We have previously shown in transgenic mice that CHRFAM7A increased emergency myelopoiesis from the bone marrow and monocyte/macrophage expression in lungs. MATERIALS AND METHODS: CHRFAM7A transgenic mice are compared to age- and gender-matched wild-type (WT) siblings. We utilized a model of sepsis using LPS injection to measure survival. Lung vascular permeability was measured after severe burn injury in WT vs. CHRFAM7A transgenic mice. Bone marrow CHRFAM7A expression was evaluated using adoptive transfer of CHRFAM7A transgenic bone marrow into WT mice. RESULTS: Here, we demonstrate that CHRFAM7A expression results in an anti-inflammatory phenotype with an improved survival to LPS and decreased acute lung injury in a severe cutaneous burn model compared to WT. CONCLUSIONS: These data suggest that the relative expression of CHRFAM7A may alter resiliency to injury and contribute to individual variability in the human systemic inflammatory response (SIRS) to injury
Recommended from our members
Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response.
A subset of genes in the human genome are uniquely human and not found in other species. One example is CHRFAM7A, a dominant-negative inhibitor of the antiinflammatory α7 nicotinic acetylcholine receptor (α7nAChR/CHRNA7) that is also a neurotransmitter receptor linked to cognitive function, mental health, and neurodegenerative disease. Here we show that CHRFAM7A blocks ligand binding to both mouse and human α7nAChR, and hypothesized that CHRFAM7A-transgenic mice would allow us to study its biological significance in a tractable animal model of human inflammatory disease, namely SIRS, the systemic inflammatory response syndrome that accompanies severe injury and sepsis. We found that CHRFAM7A increased the hematopoietic stem cell (HSC) reservoir in bone marrow and biased HSC differentiation to the monocyte lineage in vitro. We also observed that while the HSC reservoir was depleted in SIRS, HSCs were spared in CHRFAM7A-transgenic mice and that these mice also had increased immune cell mobilization, myeloid cell differentiation, and a shift to inflammatory monocytes from granulocytes in their inflamed lungs. Together, the findings point to a pathophysiological inflammatory consequence to the emergence of CHRFAM7A in the human genome. To this end, it is interesting to speculate that human genes like CHRFAM7A can account for discrepancies between the effectiveness of drugs like α7nAChR agonists in animal models and human clinical trials for inflammatory and neurodegenerative disease. The findings also support the hypothesis that uniquely human genes may be contributing to underrecognized human-specific differences in resiliency/susceptibility to complications of injury, infection, and inflammation, not to mention the onset of neurodegenerative disease
Targeting the choroid plexus-CSF-brain nexus using peptides identified by phage display.
Drug delivery to the central nervous system requires the use of specific portals to enable drug entry into the brain and, as such, there is a growing need to identify processes that can enable drug transfer across both blood-brain and blood-cerebrospinal fluid barriers. Phage display is a powerful combinatorial technique that identifies specific peptides that can confer new activities to inactive particles. Identification of these peptides is directly dependent on the specific screening strategies used for their selection and retrieval. This chapter describes three selection strategies, which can be used to identify peptides that target the choroid plexus (CP) directly or for drug translocation across the CP and into cerebrospinal fluid
Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy
In humans, esophageal cancer-related gene 4 (ECRG4) is encoded by four exons in the c2orf40 locus of chromosome 2. Translation of ECRG4 messenger ribonucleic acid produces a 148 amino acid-secreted 17 KDa protein that is then processed to 14, ten, eight, six, four, and two KDa peptides, depending on the cell in which the gene is expressed. As hypermethylation at the c2orf40 locus inhibits ECRG4 gene expression in many epithelial cancers, several investigators have speculated that ECRG4 is a candidate tumor suppressor. Indeed, overexpression of ECRG4 inhibits cell proliferation in vitro, but it also has a wide range of effects in vivo beyond its antitumor activity. ECRG4 overexpression affects apoptosis, senescence, cell migration, inflammation, injury, and infection responsiveness. ECRG4 activities also depend on its cellular localization, secretion, and post-translational processing. These cytokine/chemokine-like characteristics argue that ECRG4 is not a traditional candidate tumor suppressor gene, as originally predicted by its downregulation in cancer. We review how insights into the regulation of ECRG4 gene expression, knowledge of its primary structure, and the study of its emerging physiological functions come together to support a much more complex role for ECRG4 at the interface of inflammation, infection, and malignancy
Monitoring Neutrophil-Expressed Cell Surface Esophageal Cancer Related Gene-4 after Severe Burn Injury
BackgroundWe identified recently esophageal cancer related gene-4 (ECRG4) as a candidate cytokine that is expressed on the surface of quiescent polymorphonuclear leukocytes (PMNs) and shed in response to ex vivo treatment with lipopolysaccharide. To investigate the potential biologic relevance of changes in cell surface ECRG4 in human samples, we performed a pilot study to examine a population of burn patients in whom blood could be analyzed prospectively. We hypothesized that cutaneous burn injury would alter cell surface expression of ECRG4 on PMNs.MethodsPatients admitted with more than 20% total burn surface area (TBSA) (n = 10) had blood collected at the time of admission and weekly thereafter. For comparison, blood was obtained from a control group of healthy human volunteers (n = 4). We used flow cytometry to measure changes in ECRG4(+) PMNs from patients during recovery from injury. Esophageal cancer related gene-4 expression at each time point was compared with the patient's clinical status based on a Multiple Organ Dysfunction (MOD) score.ResultsEsophageal cancer related gene-4 was detected on the PMN surface of cells collected from healthy volunteers, however, within 48 h of admission after burn injury (n = 10 patients), the number of PMNs with cell surface ECRG4 was decreased. Esophageal cancer related gene-4 expression in PMNs was re-established over the course of patient recovery, unless complications occurred. In this case, the decrease in cell surface ECRG4(+) PMNs preceded the clinical diagnosis of infectious complications and was reflected by increased organ injury scores.ConclusionFrom a small sample set, we were able to determine that PMN cell surface ECRG4 expression was decreased after burn injury and returned to baseline during recovery from injury. Although larger studies are needed to define the role of ECRG4 in human PMNs further, this report is the first assessment of cell surface ECRG4 protein in a patient population to support analogous findings in animal studies
A phage-targeting strategy for the design of spatiotemporal drug delivery from grafted matrices
Abstract Background The natural response to injury is dynamic and normally consists of complex temporal and spatial cellular changes in gene expression, which, when acting in synchrony, result in patent tissue repair and, in some instances, regeneration. However, current therapeutic regiments are static and most rely on matrices, gels and engineered skin tissue. Accordingly, there is a need to design next-generation grafting materials to enable biotherapeutic spatiotemporal targeting from clinically approved matrices. To this end, rather then focus on developing completely new grafting materials, we investigated whether phage display could be deployed onto clinically approved synthetic grafts to identify peptide motifs capable of linking pharmaceutical drugs with differential affinities and eventually, control drug delivery from matrices over both space and time. Methods To test this hypothesis, we biopanned combinatorial peptide libraries onto different formulations of a wound-healing matrix (Integra®) and eluted the bound peptides with 1) high salt, 2) collagen and glycosaminoglycan or 3) low pH. After three to six rounds of biopanning, phage recovery and phage amplification of the bound particles, any phage that had acquired a capacity to bind the matrix was sequenced. Results In this first report, we identify distinct classes of matrix-binding peptides which elute differently from the screened matrix and demonstrate that they can be applied in a spatially relevant manner. Conclusions We suggest that further applications of these combinatorial techniques to wound-healing matrices may offer a new way to improve the performance of clinically approved matrices so as to introduce temporal and spatial control over drug delivery
Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system
Background: Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS.Methods: A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity.Results: Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles.Conclusion: These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain
Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling
Vascular endothelial growth factor (VEGF) promotes vascular permeability (VP) and neovascularization, and is required for development. We find that VEGF-stimulated Src activity in chick embryo blood vessels induces the coupling of focal adhesion kinase (FAK) to integrin αvβ5, a critical event in VEGF-mediated signaling and biological responsiveness. In contrast, FAK is constitutively associated with β1 and β3 integrins in the presence or absence of growth factors. In cultured endothelial cells, VEGF, but not basic fibroblast growth factor, promotes the Src-mediated phosphorylation of FAK on tyrosine 861, which contributes to the formation of a FAK/αvβ5 signaling complex. Moreover, formation of this FAK/αvβ5 complex is significantly reduced in pp60c-src-deficient mice. Supporting these results, mice deficient in either pp60c-src or integrin β5, but not integrin β3, have a reduced VP response to VEGF. This FAK/αvβ5 complex was also detected in epidermal growth factor-stimulated epithelial cells, suggesting a function for this complex outside the endothelium. Our findings indicate that Src can coordinate specific growth factor and extracellular matrix inputs by recruiting integrin αvβ5 into a FAK-containing signaling complex during growth factor–mediated biological responses
- …