117 research outputs found

    A Comparison of Nonlinear Regression Codes

    Get PDF
    Five readily available software packages were tested on nonlinear regression test problems from the NIST Statistical Reference Datasets. None of the packages was consistently able to obtain solutions accurate to at least three digits. However, two of the packages were somewhat more reliable than the others

    Precipitating Ordered Skyrmion Lattices from Helical Spaghetti

    Full text link
    Magnetic skyrmions have been the focus of intense research due to their potential applications in ultra-high density data and logic technologies, as well as for the unique physics arising from their antisymmetric exchange term and topological protections. In this work we prepare a chiral jammed state in chemically disordered (Fe, Co)Si consisting of a combination of randomly-oriented magnetic helices, labyrinth domains, rotationally disordered skyrmion lattices and/or isolated skyrmions. Using small angle neutron scattering, (SANS) we demonstrate a symmetry-breaking magnetic field sequence which disentangles the jammed state, resulting in an ordered, oriented skyrmion lattice. The same field sequence was performed on a sample of powdered Cu2OSeO3 and again yields an ordered, oriented skyrmion lattice, despite relatively non-interacting nature of the grains. Micromagnetic simulations confirm the promotion of a preferred skyrmion lattice orientation after field treatment, independent of the initial configuration, suggesting this effect may be universally applicable. Energetics extracted from the simulations suggest that approaching a magnetic hard axis causes the moments to diverge away from the magnetic field, increasing the Dzyaloshinskii-Moriya energy, followed subsequently by a lattice re-orientation. The ability to facilitate an emergent ordered magnetic lattice with long-range orientation in a variety of materials despite overwhelming internal disorder enables the study of skyrmions even in imperfect powdered or polycrystalline systems and greatly improves the ability to rapidly screen candidate skyrmion materials

    Ionic Tuning of Cobaltites at the Nanoscale

    Full text link
    Control of materials through custom design of ionic distributions represents a powerful new approach to develop future technologies ranging from spintronic logic and memory devices to energy storage. Perovskites have shown particular promise for ionic devices due to their high ion mobility and sensitivity to chemical stoichiometry. In this work, we demonstrate a solid-state approach to control of ionic distributions in (La,Sr)CoO3_{3} thin films. Depositing a Gd capping layer on the perovskite film, oxygen is controllably extracted from the structure, up-to 0.5 O/u.c. throughout the entire 36 nm thickness. Commensurate with the oxygen extraction, the Co valence state and saturation magnetization show a smooth continuous variation. In contrast, magnetoresistance measurements show no-change in the magnetic anisotropy and a rapid increase in the resistivity over the same range of oxygen stoichiometry. These results suggest significant phase separation, with metallic ferromagnetic regions and oxygen-deficient, insulating, non-ferromagnetic regions, forming percolated networks. Indeed, X-ray diffraction identifies oxygen-vacancy ordering, including transformation to a brownmillerite crystal structure. The unexpected transformation to the brownmillerite phase at ambient temperature is further confirmed by high-resolution scanning transmission electron microscopy which shows significant structural - and correspondingly chemical - phase separation. This work demonstrates room-temperature ionic control of magnetism, electrical resistivity, and crystalline structure in a 36 nm thick film, presenting new opportunities for ionic devices that leverage multiple material functionalities

    Beyond the Interface Limit: Structural and Magnetic Depth Profiles of Voltage-Controlled Magneto-Ionic Heterostructures

    Full text link
    Electric-field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have so far been prominently featured in the direct modification of interface chemical and physical characteristics. Here we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface limit in relatively thick AlOx/GdOx/Co (15 nm) films. Oxygen migration and its ramifications on the Co magnetization are quantitatively mapped with polarized neutron reflectometry under thermal and electro-thermal conditionings. The depth-resolved profiles uniquely identify interfacial and bulk behaviors and a semi-reversible suppression and recovery of the magnetization. Magnetometry measurements show that the conditioning changes the microstructure so as to disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms electric field induced changes in the Co oxidation state but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetic heterostructures via magneto-ionic motion, not only at the interface, but also throughout the bulk of the films

    Interfacial-Redox-Induced Tuning of Superconductivity in YBa2Cu3O7-δ.

    Get PDF
    Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation

    Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    Get PDF
    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter

    Cosmogenic Nuclide Systematics and the CRONUScalc Program

    Get PDF
    As cosmogenic nuclide applications continue to expand, the need for a common basis for calculation becomes increasingly important. In order to accurately compare between results from different nuclides, a single method of calculation is necessary. Calculators exist in numerous forms with none matching the needs of the CRONUS-Earth project to provide a simple and consistent method to interpret data from most commonly used cosmogenic nuclides. A new program written for this purpose, CRONUScalc, is presented here. This unified code presents a method applicable to 10Be, 26Al, 36Cl, 3He, and 14C, with 21Ne in testing. The base code predicts the concentration of a sample at a particular depth for a particular time in the past, which can be used for many applications. The multi-purpose code already includes functions for performing production rate calibrations as well as calculating erosion rates and surface exposure ages for single samples and depth profiles. The code is available under the GNU General Public License agreement and can be downloaded and modified to deal with specific atypical scenarios

    Three-Dimensional Structure of Hybrid Magnetic Skyrmions Determined by Neutron Scattering

    Full text link
    Magnetic skyrmions are topologically protected chiral spin textures which present opportunities for next-generation magnetic data storage and logic information technologies. The topology of these structures originates in the geometric configuration of the magnetic spins - more generally described as the structure. While the skyrmion structure is most often depicted using a 2D projection of the three-dimensional structure, recent works have emphasized the role of all three dimensions in determining the topology and their response to external stimuli. In this work, grazing-incidence small-angle neutron scattering and polarized neutron reflectometry are used to determine the three-dimensional structure of hybrid skyrmions. The structure of the hybrid skyrmions, which includes a combination of N\'eel-like and Bloch-like components along their length, is expected to significantly contribute to their notable stability, which includes ambient conditions. To interpret the neutron scattering data, micromagnetic simulations of the hybrid skyrmions were performed, and the corresponding diffraction patterns were determined using a Born approximation transformation. The converged magnetic profile reveals the magnetic structure along with the skyrmion depth profile, including the thickness of the Bloch and N\'eel segments and the diameter of the core

    Interdependence between training and magnetization reversal in granular Co-CoO exchange bias systems

    Get PDF
    The interdependence between training and magnetization reversal in granular Co-CoO exchange bias (EB) systems prepared byOion implantation inCo thin films is demonstrated by polarized neutron reflectometry. While high-fluence O-implanted thin films show reduced relative training values and no asymmetry in magnetization reversal (all reversals take place by domain wall nucleation and motion), low-fluence O ion implantation results in an increased relative training and a magnetization reversal asymmetry between the first descending and the first ascending branches. Whereas the untrained decreasing field reversal occurs mainly by domain wall nucleation and motion, traces of a domain rotation contribution are evidenced in the increasing field reversal. This is explained by the evolution of the CoO structure and the contribution of the out-of-plane magnetization with ion implantation. The amount of incorporated O, which determines the threshold between both behaviors, is around 20 at.%. This reveals that the interdependence between training and magnetization reversal is insensitive to the morphology of the constituents (i.e., granular or layered), indicating that this is an intrinsic EB effect, which can be conveniently tailored by the interplay between the intrinsic properties of the investigated materials and ion implantation
    • …
    corecore