52 research outputs found

    Polyaromatic hydrocarbons in pollution: a heart-breaking matter

    Get PDF
    Air pollution is associated with detrimental effects on human health, including decreased cardiovascular function. However, the causative mechanisms behind these effects have yet to be fully elucidated. Here we review the current epidemiological, clinical and experimental evidence linking pollution with cardiovascular dysfunction. Our focus is on particulate matter (PM) and the associated low molecular weight polycyclic aromatic hydrocarbons (PAHs) as key mediators of cardiotoxicity. We begin by reviewing the growing epidemiological evidence linking air pollution to cardiovascular dysfunction in humans. We next address the pollution‐based cardiotoxic mechanisms first identified in fish following the release of large quantities of PAHs into the marine environment from point oil spills (e.g. Deepwater Horizon). We finish by discussing the current state of mechanistic knowledge linking PM and PAH exposure to mammalian cardiovascular patho‐physiologies such as atherosclerosis, cardiac hypertrophy, arrhythmias, contractile dysfunction and the underlying alterations in gene regulation. Our aim is to show conservation of toxicant pathways and cellular targets across vertebrate hearts to allow a broad framework of the global problem of cardiotoxic pollution to be established. AhR; Aryl hydrocarbon receptor. Dark lines indicate topics discussed in this review. Grey lines indicate topics reviewed elsewhere.publishedVersio

    Resurgence of cardiac T-tubule research

    No full text

    T-tubule function in mammalian cardiac myocytes

    No full text
    Abstract—The transverse tubules (t-tubules) of mammalian cardiac ventricular myocytes are invaginations of the surface membrane. Recent studies have suggested that the structure and function of the t-tubules are more complex than previously believed; in particular, many of the proteins involved in cellular Ca2 cycling appear to be concentrated at the t-tubule. Thus, the t-tubules are an important determinant of cardiac cell function, especially as the main site of excitation-contraction coupling, ensuring spatially and temporally synchronous Ca2 release throughout the cell. Changes in t-tubule structure and protein expression occur during development and in heart failure, so that changes in the t-tubules may contribute to the functional changes observed in these conditions. The purpose of this review is to provide an overview of recent studies of t-tubule structure and function in cardiac myocytes. (Circ Res. 2003;92:1182-1192.) Key Words: cardiac muscle t-tubules excitation-contraction coupling heart failure The transverse tubules (t-tubules) of mammalian cardiacventricular myocytes are invaginations of the surface membrane that occur at the Z line and have both transverse and longitudinal elements. Many of the proteins involved in excitation-contraction coupling appear to be concentrated at the t-tubules. Therefore, it has been suggested that th
    • 

    corecore