6,397 research outputs found
VICAR-DIGITAL image processing system
Computer program corrects various photometic, geometric and frequency response distortions in pictures. The program converts pictures to a number of elements, with each elements optical density quantized to a numerical value. The translated picture is recorded on magnetic tape in digital form for subsequent processing and enhancement by computer
Simulation of gain stability of THGEM gas-avalanche particle detectors
Charging-up processes affecting gain stability in Thick Gas Electron
Multipliers (THGEM) were studied with a dedicated simulation toolkit.
Integrated with Garfield++, it provides an effective platform for systematic
phenomenological studies of charging-up processes in MPGD detectors. We
describe the simulation tool and the fine-tuning of the step-size required for
the algorithm convergence, in relation to physical parameters. Simulation
results of gain stability over time in THGEM detectors are presented, exploring
the role of electrode-thickness and applied voltage on its evolution. The
results show that the total amount of irradiated charge through electrode's
hole needed for reaching gain stabilization is in the range of tens to hundreds
of pC, depending on the detector geometry and operational voltage. These
results are in agreement with experimental observations presented previously
The hypertoric intersection cohomology ring
We present a functorial computation of the equivariant intersection
cohomology of a hypertoric variety, and endow it with a natural ring structure.
When the hyperplane arrangement associated with the hypertoric variety is
unimodular, we show that this ring structure is induced by a ring structure on
the equivariant intersection cohomology sheaf in the equivariant derived
category. The computation is given in terms of a localization functor which
takes equivariant sheaves on a sufficiently nice stratified space to sheaves on
a poset.Comment: Significant revisions in Section 5, with several corrected proof
A variant of the Mukai pairing via deformation quantization
We give a new method to prove a formula computing a variant of Caldararu's
Mukai pairing \cite{Cal1}. Our method is based on some important results in the
area of deformation quantization. In particular, part of the work of Kashiwara
and Schapira in \cite{KS} as well as an algebraic index theorem of Bressler,
Nest and Tsygan in \cite{BNT},\cite{BNT1} and \cite{BNT2} are used. It is hoped
that our method is useful for generalization to settings involving certain
singular varieties.Comment: 8 pages. Comments and suggestions welcom
A Method of Drusen Measurement Based on the Geometry of Fundus Reflectance
BACKGROUND: The hallmarks of age-related macular degeneration, the leading cause of blindness in the developed world, are the subretinal deposits known as drusen. Drusen identification and measurement play a key role in clinical studies of this disease. Current manual methods of drusen measurement are laborious and subjective. Our purpose was to expedite clinical research with an accurate, reliable digital method. METHODS: An interactive semi-automated procedure was developed to level the macular background reflectance for the purpose of morphometric analysis of drusen. 12 color fundus photographs of patients with age-related macular degeneration and drusen were analyzed. After digitizing the photographs, the underlying background pattern in the green channel was leveled by an algorithm based on the elliptically concentric geometry of the reflectance in the normal macula: the gray scale values of all structures within defined elliptical boundaries were raised sequentially until a uniform background was obtained. Segmentation of drusen and area measurements in the central and middle subfields (1000 μm and 3000 μm diameters) were performed by uniform thresholds. Two observers using this interactive semi-automated software measured each image digitally. The mean digital measurements were compared to independent stereo fundus gradings by two expert graders (stereo Grader 1 estimated the drusen percentage in each of the 24 regions as falling into one of four standard broad ranges; stereo Grader 2 estimated drusen percentages in 1% to 5% intervals). RESULTS: The mean digital area measurements had a median standard deviation of 1.9%. The mean digital area measurements agreed with stereo Grader 1 in 22/24 cases. The 95% limits of agreement between the mean digital area measurements and the more precise stereo gradings of Grader 2 were -6.4 % to +6.8 % in the central subfield and -6.0 % to +4.5 % in the middle subfield. The mean absolute differences between the digital and stereo gradings 2 were 2.8 +/- 3.4% in the central subfield and 2.2 +/- 2.7% in the middle subfield. CONCLUSIONS: Semi-automated, supervised drusen measurements may be done reproducibly and accurately with adaptations of commercial software. This technique for macular image analysis has potential for use in clinical research
Courant-Dorfman algebras and their cohomology
We introduce a new type of algebra, the Courant-Dorfman algebra. These are to
Courant algebroids what Lie-Rinehart algebras are to Lie algebroids, or Poisson
algebras to Poisson manifolds. We work with arbitrary rings and modules,
without any regularity, finiteness or non-degeneracy assumptions. To each
Courant-Dorfman algebra (\R,\E) we associate a differential graded algebra
\C(\E,\R) in a functorial way by means of explicit formulas. We describe two
canonical filtrations on \C(\E,\R), and derive an analogue of the Cartan
relations for derivations of \C(\E,\R); we classify central extensions of
\E in terms of H^2(\E,\R) and study the canonical cocycle
\Theta\in\C^3(\E,\R) whose class obstructs re-scalings of the
Courant-Dorfman structure. In the nondegenerate case, we also explicitly
describe the Poisson bracket on \C(\E,\R); for Courant-Dorfman algebras
associated to Courant algebroids over finite-dimensional smooth manifolds, we
prove that the Poisson dg algebra \C(\E,\R) is isomorphic to the one
constructed in \cite{Roy4-GrSymp} using graded manifolds.Comment: Corrected formulas for the brackets in Examples 2.27, 2.28 and 2.29.
The corrections do not affect the exposition in any wa
Recommended from our members
A randomised phase I study of etrolizumab (rhuMAb β7) in moderate to severe ulcerative colitis.
ObjectiveEtrolizumab (rhuMAb β7, anti-β7, PRO145223) is a humanised monoclonal antibody targeting the β7 subunit of the heterodimeric integrins α4β7 and αEβ7, which are implicated in leucocyte migration and retention in ulcerative colitis (UC). This randomised phase I study evaluated the safety and pharmacology of etrolizumab in patients with moderate to severe UC.DesignIn the single ascending dose (SAD) stage, etrolizumab (0.3, 1.0, 3.0, 10 mg/kg intravenous, 3.0 mg/kg subcutaneous (SC) or placebo) was administered 4:1 (n=25) in each cohort. In the multiple dose (MD) stage, new patients received monthly etrolizumab (0.5 mg/kg SC (n=4), 1.5 mg/kg SC (n=5), 3.0 mg/kg SC (n=4), 4.0 mg/kg intravenous (n=5)) or placebo (n=5). The pharmacokinetics was studied and Mayo Clinic Score evaluated at baseline, day 29 (SAD), and days 43 and 71 (MD).ResultsIn the SAD stage, there were no dose limiting toxicities, infusion or injection site reactions. Two impaired wound healing serious adverse events occurred in two patients receiving etrolizumab. In the MD stage, there were no dose limiting toxicities, and no infusion or injection site reactions. Headache was the most common adverse event, occurring more often in etrolizumab patients. Antietrolizumab antibodies were detected in two subjects. The duration of β7 receptor full occupancy was dose related. A clinical response was observed in 12/18 patients, and clinical remission in 3/18 patients treated with etrolizumab in the MD stage, compared with 4/5 and 1/5 placebo patients, respectively.ConclusionEtrolizumab is well tolerated in moderate to severe UC. Further investigation is warranted
- …
