1,264 research outputs found

    The Mass-Metallicity and Luminosity-Metallicity Relation from DEEP2 at z ~ 0.8

    Get PDF
    We present the mass-metallicity (MZ) and luminosity-metallicity (LZ) relations at z ~ 0.8 from ~1350 galaxies in the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We determine stellar masses by fitting the spectral energy distribution inferred from photometry with current stellar population synthesis models. This work raises the number of galaxies with metallicities at z ~ 0.8 by more than an order of magnitude. We investigate the evolution in the MZ and LZ relations in comparison with local MZ and LZ relations determined in a consistent manner using ~21,000 galaxies in the Sloan Digital Sky Survey. We show that high stellar mass galaxies (log(M/M_solar)~10.6) at z ~ 0.8 have attained the chemical enrichment seen in the local universe, while lower stellar mass galaxies (log(M/M_solar)~9.2) at z ~ 0.8 have lower metallicities (Delta log(O/H)~0.15 dex) than galaxies at the same stellar mass in the local universe. We find that the LZ relation evolves in both metallicity and B-band luminosity between z ~ 0.8 and z~ 0, with the B-band luminosity evolving as a function of stellar mass. We emphasize that the B-band luminosity should not be used as a proxy for stellar mass in chemical evolution studies of star-forming galaxies. Our study shows that both the metallicity evolution and the B-band luminosity evolution for emission-line galaxies between the epochs are a function of stellar mass, consistent with the cosmic downsizing scenario of galaxy evolution.Comment: Accepted Version: 18 pages, 13 figure

    Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    Full text link
    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 {\AA} range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C2+^{2+} and/or O2+^{2+} from faint pure recombination lines (RLs) in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations for Galactic and extragalactic HII regions and comparing with results for halo stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy a different locus in the C/O vs. O/H diagram than those belonging to the inner discs of spiral galaxies, indicating their different chemical evolution histories, and that the bulk of C in the most metal-poor extragalactic HII regions should have the same origin than in halo stars. The comparison between the C/O ratios in HII regions and in stars of the Galactic thick and thin discs seems to give arguments to support the merging scenario for the origin of the Galactic thick disc. Finally, we find an apparent coupling between C and N enrichment at the usual metallicities determined for HII regions and that this coupling breaks in very low-metallicity objects.Comment: 27 pages, 12 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    No temperature fluctuations in the giant HII region H 1013

    Get PDF
    While collisionally excited lines in HII regions allow one to easily probe the chemical composition of the interstellar medium in galaxies, the possible presence of important temperature fluctuations casts some doubt on the derived abundances. To provide new insights into this question, we have carried out a detailed study of a giant HII region, H 1013, located in the galaxy M101, for which many observational data exist and which has been claimed to harbour temperature fluctuations at a level of t^2 = 0.03-0.06. We have first complemented the already available optical observational datasets with a mid-infrared spectrum obtained with the Spitzer Space Telescope. Combined with optical data, this spectrum provides unprecedented information on the temperature structure of this giant HII region. A preliminary analysis based on empirical temperature diagnostics suggests that temperature fluctuations should be quite weak. We have then performed a detailed modelling using the pyCloudy package based on the photoionization code Cloudy. We have been able to produce photoionization models constrained by the observed Hb surface brightness distribution and by the known properties of the ionizing stellar population than can account for most of the line ratios within their uncertainties. Since the observational constraints are both strong and numerous, this argues against the presence of significant temperature fluctuations in H 1013. The oxygen abundance of our best model is 12 + log O/H = 8.57, as opposed to the values of 8.73 and 8.93 advocated by Esteban et al. (2009) and Bresolin (2007), respectively, based on the significant temperature fluctuations they derived. However, our model is not able to reproduce the intensities of the oxygen recombination lines . This cannot be attributed to observational uncertainties and requires an explanation other than temperature fluctuations.Comment: accepted in Astronomy & Astrophysic

    Reexamination of the Radial Abundance Gradient Break in NGC 3359

    Full text link
    In this contribution, we reexamine the radial oxygen abundance gradient in the strongly barred spiral galaxy NGC 3359, for which, using an imaging spectrophotometric technique, Martin & Roy detected a break near the effective radius of the galaxy. We have new emission line flux measurements of HII regions in NGC 3359 from spectra obtained with the Subaru telescope to further investigate this claim. We find that there are small systematic variations in the line ratios determined from narrow-band imaging as compared to our spectroscopic measurements. We derive and apply a correction to the line ratios found by Martin & Roy and statistically examine the validity of the gradient break proposed for NGC 3359 using recently developed metallicity diagnostics. We find that, with a high degree of confidence, a model with a break fits the data significantly better than one without it. This suggests that the presence of a strong bar in spiral galaxies can generate measurable changes in the radial distribution of metals.Comment: Accepted to A
    corecore