1,264 research outputs found
The Mass-Metallicity and Luminosity-Metallicity Relation from DEEP2 at z ~ 0.8
We present the mass-metallicity (MZ) and luminosity-metallicity (LZ)
relations at z ~ 0.8 from ~1350 galaxies in the Deep Extragalactic Evolutionary
Probe 2 (DEEP2) survey. We determine stellar masses by fitting the spectral
energy distribution inferred from photometry with current stellar population
synthesis models. This work raises the number of galaxies with metallicities at
z ~ 0.8 by more than an order of magnitude. We investigate the evolution in the
MZ and LZ relations in comparison with local MZ and LZ relations determined in
a consistent manner using ~21,000 galaxies in the Sloan Digital Sky Survey. We
show that high stellar mass galaxies (log(M/M_solar)~10.6) at z ~ 0.8 have
attained the chemical enrichment seen in the local universe, while lower
stellar mass galaxies (log(M/M_solar)~9.2) at z ~ 0.8 have lower metallicities
(Delta log(O/H)~0.15 dex) than galaxies at the same stellar mass in the local
universe. We find that the LZ relation evolves in both metallicity and B-band
luminosity between z ~ 0.8 and z~ 0, with the B-band luminosity evolving as a
function of stellar mass. We emphasize that the B-band luminosity should not be
used as a proxy for stellar mass in chemical evolution studies of star-forming
galaxies. Our study shows that both the metallicity evolution and the B-band
luminosity evolution for emission-line galaxies between the epochs are a
function of stellar mass, consistent with the cosmic downsizing scenario of
galaxy evolution.Comment: Accepted Version: 18 pages, 13 figure
Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution
We present deep echelle spectrophotometry of the brightest emission-line
knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX
4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in
the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with
the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the
3100-10420 {\AA} range. We determine electron densities and temperatures of the
ionized gas from several emission-line intensity ratios for all the objects. We
derive the ionic abundances of C and/or O from faint pure
recombination lines (RLs) in several of the objects, permitting to derive their
C/H and C/O ratios. We have explored the chemical evolution at low
metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations
for Galactic and extragalactic HII regions and comparing with results for halo
stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy
a different locus in the C/O vs. O/H diagram than those belonging to the inner
discs of spiral galaxies, indicating their different chemical evolution
histories, and that the bulk of C in the most metal-poor extragalactic HII
regions should have the same origin than in halo stars. The comparison between
the C/O ratios in HII regions and in stars of the Galactic thick and thin discs
seems to give arguments to support the merging scenario for the origin of the
Galactic thick disc. Finally, we find an apparent coupling between C and N
enrichment at the usual metallicities determined for HII regions and that this
coupling breaks in very low-metallicity objects.Comment: 27 pages, 12 figures, Accepted for publication in Monthly Notices of
the Royal Astronomical Societ
No temperature fluctuations in the giant HII region H 1013
While collisionally excited lines in HII regions allow one to easily probe
the chemical composition of the interstellar medium in galaxies, the possible
presence of important temperature fluctuations casts some doubt on the derived
abundances. To provide new insights into this question, we have carried out a
detailed study of a giant HII region, H 1013, located in the galaxy M101, for
which many observational data exist and which has been claimed to harbour
temperature fluctuations at a level of t^2 = 0.03-0.06. We have first
complemented the already available optical observational datasets with a
mid-infrared spectrum obtained with the Spitzer Space Telescope. Combined with
optical data, this spectrum provides unprecedented information on the
temperature structure of this giant HII region. A preliminary analysis based on
empirical temperature diagnostics suggests that temperature fluctuations should
be quite weak. We have then performed a detailed modelling using the pyCloudy
package based on the photoionization code Cloudy. We have been able to produce
photoionization models constrained by the observed Hb surface brightness
distribution and by the known properties of the ionizing stellar population
than can account for most of the line ratios within their uncertainties. Since
the observational constraints are both strong and numerous, this argues against
the presence of significant temperature fluctuations in H 1013. The oxygen
abundance of our best model is 12 + log O/H = 8.57, as opposed to the values of
8.73 and 8.93 advocated by Esteban et al. (2009) and Bresolin (2007),
respectively, based on the significant temperature fluctuations they derived.
However, our model is not able to reproduce the intensities of the oxygen
recombination lines . This cannot be attributed to observational uncertainties
and requires an explanation other than temperature fluctuations.Comment: accepted in Astronomy & Astrophysic
Reexamination of the Radial Abundance Gradient Break in NGC 3359
In this contribution, we reexamine the radial oxygen abundance gradient in
the strongly barred spiral galaxy NGC 3359, for which, using an imaging
spectrophotometric technique, Martin & Roy detected a break near the effective
radius of the galaxy. We have new emission line flux measurements of HII
regions in NGC 3359 from spectra obtained with the Subaru telescope to further
investigate this claim. We find that there are small systematic variations in
the line ratios determined from narrow-band imaging as compared to our
spectroscopic measurements. We derive and apply a correction to the line ratios
found by Martin & Roy and statistically examine the validity of the gradient
break proposed for NGC 3359 using recently developed metallicity diagnostics.
We find that, with a high degree of confidence, a model with a break fits the
data significantly better than one without it. This suggests that the presence
of a strong bar in spiral galaxies can generate measurable changes in the
radial distribution of metals.Comment: Accepted to A
Proposta de tratamento e avaliação de resíduos contendo hexano gerados nos laboratórios da Embrapa Instrumentação visando sua reutilização.
- …
