32 research outputs found

    Halcyon -- A Pathology Imaging and Feature analysis and Management System

    Full text link
    Halcyon is a new pathology imaging analysis and feature management system based on W3C linked-data open standards and is designed to scale to support the needs for the voluminous production of features from deep-learning feature pipelines. Halcyon can support multiple users with a web-based UX with access to all user data over a standards-based web API allowing for integration with other processes and software systems. Identity management and data security is also provided.Comment: 15 pages, 11 figures. arXiv admin note: text overlap with arXiv:2005.0646

    Open and Reusable Deep Learning for Pathology with WSInfer and QuPath

    Get PDF
    Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology

    Open and reusable deep learning for pathology with WSInfer and QuPath

    Get PDF
    The field of digital pathology has seen a proliferation of deep learning models in recent years. Despite substantial progress, it remains rare for other researchers and pathologists to be able to access models published in the literature and apply them to their own images. This is due to difficulties in both sharing and running models. To address these concerns, we introduce WSInfer: a new, open-source software ecosystem designed to make deep learning for pathology more streamlined and accessible. WSInfer comprises three main elements: 1) a Python package and command line tool to efficiently apply patch-based deep learning inference to whole slide images; 2) a QuPath extension that provides an alternative inference engine through user-friendly and interactive software, and 3) a model zoo, which enables pathology models and metadata to be easily shared in a standardized form. Together, these contributions aim to encourage wider reuse, exploration, and interrogation of deep learning models for research purposes, by putting them into the hands of pathologists and eliminating a need for coding experience when accessed through QuPath. The WSInfer source code is hosted on GitHub and documentation is available at https://wsinfer.readthedocs.io

    Confrontational Behavior and Escalation to War 1816-1980: A Research Plan

    Full text link
    The understanding of international war, like many complex social events, may be - and has been - ap proached from a range of theoretical perspectives and via a variety of research strategies. Outside of the work of Bloch (1898), Sorokin (1936), Richardson (1941), and Wright (1942), however, there was little re search of a scientific nature until the mid-1960s. And while these past fifteen years have certainly not given us a compelling theory of international war, they have seen a steady growth in cumulative knowledge regar ding the correlates of war. These results, despite the expected mix of inconsistencies and anomalies, provide us with some sense of the factors that are most consistently associated with war over the last century and a half, along with some tentative insights into the rising and declining potency of these factors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68556/2/10.1177_002234338201900104.pd

    Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Get PDF
    Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence

    Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    Get PDF
    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants
    corecore