19 research outputs found

    Choline supplementation in children with fetal alcohol spectrum disorders has high feasibility and tolerability

    Get PDF
    There are no biological treatments for fetal alcohol spectrum disorders (FASDs), lifelong conditions associated with physical anomalies, brain damage, and neurocognitive abnormalities. In preclinical studies, choline partially ameliorates memory and learning deficits from prenatal alcohol exposure. This phase I pilot study evaluated the feasibility, tolerability, and potential adverse effects of choline supplementation in children with FASD. We hypothesized that choline would be well tolerated with minimal adverse events. The study design was a double-blind, randomized, placebo-controlled trial. Participants included 20 children aged 2.5 to 4.9 years with prenatal alcohol exposure and FASD diagnoses. Participants were randomly assigned to 500 mg choline or placebo daily for 9 months (10 active, 10 placebo). Primary outcome measures included feasibility, tolerability, adverse effects, and serum choline levels. Seventeen participants completed the study. Compliance was 82% to 87%, as evidenced by parent-completed log sheets and dose counts. Periodic 24-hour dietary recalls showed no evidence of dietary confounding. Adverse events were minimal and were equivalent in the active and placebo arms with the exception of fishy body odor, which occurred only in the active group. There were no serious adverse events to research participants. This phase I pilot study demonstrates that choline supplementation at 500 mg/d for 9 months in children aged 2 to 5 years is feasible and has high tolerability. Further examination of the efficacy of choline supplementation in FASD is currently underway

    Four-year follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder

    Get PDF
    Background: Despite the high prevalence of fetal alcohol spectrum disorder (FASD), there are few interventions targeting its core neurocognitive and behavioral deficits. FASD is often conceptualized as static and permanent, but interventions that capitalize on brain plasticity and critical developmental windows are emerging. We present a long-term follow-up study evaluating the neurodevelopmental effects of choline supplementation in children with FASD 4 years after an initial efficacy trial. Methods: The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2-5-year-olds with FASD. Participants include 31 children (16 placebo; 15 choline) seen 4 years after trial completion. The mean age at follow-up was 8.6 years. Diagnoses were 12.9% fetal alcohol syndrome (FAS), 41.9% partial FAS, and 45.1% alcohol-related neurodevelopmental disorder. The follow-up included measures of intelligence, memory, executive functioning, and behavior. Results: Children who received choline had higher non-verbal intelligence, higher visual-spatial skill, higher working memory ability, better verbal memory, and fewer behavioral symptoms of attention deficit hyperactivity disorder than the placebo group. No differences were seen for verbal intelligence, visual memory, or other executive functions. Conclusions: These data support choline as a potential neurodevelopmental intervention for FASD and highlight the need for long-term follow-up to capture treatment effects on neurodevelopmental trajectories. Trial registration: ClinicalTrials.Gov #NCT01149538; Registered: June 23, 2010; first enrollment July 2, 2010

    Global gene flow releases invasive plants from environmental constraints on genetic diversity

    Get PDF
    When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata. Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area

    The global distribution and drivers of wood density and their impact on forest carbon stocks.

    Get PDF
    The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    State of the world’s plants and fungi 2020

    Get PDF
    Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity

    Patient assessed health instruments for the knee: a structured review

    No full text
    Objectives. To identify patient-assessed health instruments specific to the knee and review evidence for reliability, validity and responsiveness. Methods. Instruments were identified through systematic searches of the literature. Information relating to instrument content, patient population, reliability, validity and responsiveness was extracted from published papers. Results. The 16 instruments that met the inclusion criteria varied in length from 4 to 42 items. The majority form a single index; six produce a profile of scores. Eight have been evaluated in patients with a variety of knee problems. All instruments have satisfactory internal or test–retest reliability. However, there is limited empirical support for the health domains of six instruments. Patients informed the development of items within just five instruments. Few authors gave explicit consideration to the size of expected relationships in tests of construct validity. Eleven instruments have evidence for responsiveness to changes in health. The minimally important difference was not determined for any of the instruments. Conclusions. In the absence of comparative evidence, the large number of patient-assessed instruments for knee problems makes instrument selection difficult. The Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Pain Scale and Oxford Knee Score have good evidence for reliability, content validity and construct validity. The KOOS and Oxford instruments also have evidence for responsiveness. The instruments have not been evaluated for all knee problems, and instrument appropriateness, including content relevance, must be assessed before application. The comparative evaluation of instruments is recommended

    Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales

    No full text
    The Southern Ocean plays a pivotal role in the global ocean circulation and climate1, 2, 3. There, the deep water masses of the world ocean upwell to the surface and subsequently sink to intermediate and abyssal depths, forming two overturning cells that exchange substantial quantities of heat and carbon with the atmosphere4, 5. The sensitivity of the upper cell to climatic changes in forcing is relatively well established6. However, little is known about how the lower cell responds, and in particular whether small-scale mixing in the abyssal Southern Ocean, an important controlling process of the lower cell7, 8, is influenced by atmospheric forcing. Here, we present observational evidence that relates changes in abyssal mixing to oceanic eddy variability on timescales of months to decades. Observational estimates of mixing rates, obtained along a repeat hydrographic transect across Drake Passage, are shown to be dependent on local oceanic eddy energy, derived from moored current meter and altimetric measurements. As the intensity of the regional eddy field is regulated by the Southern Hemisphere westerly winds9, 10, our findings suggest that Southern Ocean abyssal mixing and overturning are sensitive to climatic perturbations in wind forcing
    corecore