8,387 research outputs found

    On The Capacity of Surfaces in Manifolds with Nonnegative Scalar Curvature

    Full text link
    Given a surface in an asymptotically flat 3-manifold with nonnegative scalar curvature, we derive an upper bound for the capacity of the surface in terms of the area of the surface and the Willmore functional of the surface. The capacity of a surface is defined to be the energy of the harmonic function which equals 0 on the surface and goes to 1 at infinity. Even in the special case of Euclidean space, this is a new estimate. More generally, equality holds precisely for a spherically symmetric sphere in a spatial Schwarzschild 3-manifold. As applications, we obtain inequalities relating the capacity of the surface to the Hawking mass of the surface and the total mass of the asymptotically flat manifold.Comment: 18 page

    Zero area singularities in general relativity and inverse mean curvature flow

    Full text link
    First we restate the definition of a Zero Area Singularity, recently introduced by H. Bray. We then consider several definitions of mass for these singularities. We use the Inverse Mean Curvature Flow to prove some new results about the mass of a singularity, the ADM mass of the manifold, and the capacity of the singularity.Comment: 13 page

    Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results

    Full text link
    We consider the pair correlation functions of both the order parameter field and its square for phase ordering in the O(n)O(n) model with nonconserved order parameter, in spatial dimension 2≤d≤32\le d\le 3 and spin dimension 1≤n≤d1\le n\le d. We calculate, in the scaling limit, the exact short-distance singularities of these correlation functions and compare these predictions to numerical simulations. Our results suggest that the scaling hypothesis does not hold for the d=2d=2 O(2)O(2) model. Figures (23) are available on request - email [email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Spin-resolved electron-impact ionization of lithium

    Get PDF
    Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the spin asymmetries, which are in good agreement with experiment, than for the underlying cross sections. Comparison with the recent measured and DS3C-calculated data of Streun et al (1999) is most intriguing. Excellent agreement is found with the measured and calculated spin asymmetries, yet the discrepancy between the CCC and DS3C cross sections is very large

    The effect of shear on persistence in coarsening systems

    Full text link
    We analytically study the effect of a uniform shear flow on the persistence properties of coarsening systems. The study is carried out within the anisotropic Ohta-Jasnow-Kawasaki (OJK) approximation for a system with nonconserved scalar order parameter. We find that the persistence exponent theta has a non-trivial value: theta = 0.5034... in space dimension d=3, and theta = 0.2406... for d=2, the latter being exactly twice the value found for the unsheared system in d=1. We also find that the autocorrelation exponent lambda is affected by shear in d=3 but not in d=2.Comment: 6 page

    The Stability of the Replica Symmetric State in Finite Dimensional Spin Glasses

    Full text link
    According to the droplet picture of spin glasses, the low-temperature phase of spin glasses should be replica symmetric. However, analysis of the stability of this state suggested that it was unstable and this instability lends support to the Parisi replica symmetry breaking picture of spin glasses. The finite-size scaling functions in the critical region of spin glasses below T_c in dimensions greater than 6 can be determined and for them the replica symmetric solution is unstable order by order in perturbation theory. Nevertheless the exact solution can be shown to be replica-symmetric. It is suggested that a similar mechanism might apply in the low-temperature phase of spin glasses in less than six dimensions, but that a replica symmetry broken state might exist in more than six dimensions.Comment: 5 pages. Modified to include a paragraph on the relation of this work to that of Newman and Stei

    Corrections to Scaling in Phase-Ordering Kinetics

    Full text link
    The leading correction to scaling associated with departures of the initial condition from the scaling morphology is determined for some soluble models of phase-ordering kinetics. The result for the pair correlation function has the form C(r,t) = f_0(r/L) + L^{-\omega} f_1(r/L) + ..., where L is a characteristic length scale extracted from the energy. The correction-to-scaling exponent \omega has the value \omega=4 for the d=1 Glauber model, the n-vector model with n=\infty, and the approximate theory of Ohta, Jasnow and Kawasaki. For the approximate Mazenko theory, however, \omega has a non-trivial value: omega = 3.8836... for d=2, and \omega = 3.9030... for d=3. The correction-to-scaling functions f_1(x) are also calculated.Comment: REVTEX, 7 pages, two figures, needs epsf.sty and multicol.st

    Phase Ordering Kinetics with External Fields and Biased Initial Conditions

    Full text link
    The late-time phase-ordering kinetics of the O(n) model for a non-conserved order parameter are considered for the case where the O(n) symmetry is broken by the initial conditions or by an external field. An approximate theoretical approach, based on a `gaussian closure' scheme, is developed, and results are obtained for the time-dependence of the mean order parameter, the pair correlation function, the autocorrelation function, and the density of topological defects [e.g. domain walls (n=1n=1), or vortices (n=2n=2)]. The results are in qualitative agreement with experiments on nematic films and related numerical simulations on the two-dimensional XY model with biased initial conditions.Comment: 35 pages, latex, no figure

    Absence of an Almeida-Thouless line in Three-Dimensional Spin Glasses

    Full text link
    We present results of Monte Carlo simulations of the three-dimensional Edwards-Anderson Ising spin glass in the presence of a (random) field. A finite-size scaling analysis of the correlation length shows no indication of a transition, in contrast to the zero-field case. This suggests that there is no Almeida-Thouless line for short-range Ising spin glasses.Comment: 4 pages, 4 figures, 1 tabl
    • …
    corecore