1,698 research outputs found

    Quantum parallel dense coding of optical images

    Full text link
    We propose quantum dense coding protocol for optical images. This protocol extends the earlier proposed dense coding scheme for continuous variables [S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially multimode in space and time optical quantum communication channel. This new scheme allows, in particular, for parallel dense coding of non-stationary optical images. Similar to some other quantum dense coding protocols, our scheme exploits the possibility of sending a classical message through only one of the two entangled spatially-multimode beams, using the other one as a reference system. We evaluate the Shannon mutual information for our protocol and find that it is superior to the standard quantum limit. Finally, we show how to optimize the performance of our scheme as a function of the spatio-temporal parameters of the multimode entangled light and of the input images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on Quantum Imaging in Journal of Modern Optic

    Non-classical properties of quantum wave packets propagating in a Kerr-like medium

    Full text link
    We investigate non-classical effects such as fractional revivals, squeezing and higher-order squeezing of photon-added coherent states propagating through a Kerr-like medium.The Wigner functions corresponding to these states at the instants of fractional revivals are obtained, and the extent of non-classicality quantified.Comment: 8 pages, 10 figure

    Quantum teleportation of optical images with frequency conversion

    Full text link
    We describe a new version of continuous variables quantum holographic teleportation of optical images. Unlike the previously proposed scheme, it is based on the continuous variables quantum entanglement between the light fields of different frequencies and allows for the wavelength conversion between the original and the teleported images. The frequency tunable holographic teleportation protocol can be used as a part of light-matter interface in parallel quantum information processing and parallel quantum memoryComment: 4 pages, 3 Postscript figures, RevTeX

    Pulsed squeezed light: simultaneous squeezing of multiple modes

    Full text link
    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency

    Inseparability criterion for continuous variable systems

    Get PDF
    An inseparability criterion based on the total variance of a pair of Einstein-Podolsky-Rosen type operators is proposed for continuous variable systems. The criterion provides a sufficient condition for entanglement of any two-party continuous variable states. Furthermore, for all the Gaussian states, this criterion turns out to be a necessary and sufficient condition for inseparability.Comment: minor changes in the introduction and ref

    Quantum teleportation of EPR pair by three-particle entanglement

    Get PDF
    Teleportation of an EPR pair using triplet in state of the Horne-Greenberger-Zeilinger form to two receivers is considered. It needs a three-particle basis for joint measurement. By contrast the one qubit teleportation the required basis is not maximally entangled. It consists of the states corresponding to the maximally entanglement of two particles only. Using outcomes of measurement both receivers can recover an unknown EPR state however one of them can not do it separately. Teleportation of the N-particle entanglement is discussed.Comment: 7 pages, LaTeX, 3 figure

    Estimation of pure qubits on circles

    Full text link
    Gisin and Popescu [PRL, 83, 432 (1999)] have shown that more information about their direction can be obtained from a pair of anti-parallel spins compared to a pair of parallel spins, where the first member of the pair (which we call the pointer member) can point equally along any direction in the Bloch sphere. They argued that this was due to the difference in dimensionality spanned by these two alphabets of states. Here we consider similar alphabets, but with the first spin restricted to a fixed small circle of the Bloch sphere. In this case, the dimensionality spanned by the anti-parallel versus parallel alphabet is now equal. However, the anti-parallel alphabet is found to still contain more information in general. We generalize this to having N parallel spins and M anti-parallel spins. When the pointer member is restricted to a small circle these alphabets again span spaces of equal dimension, yet in general, more directional information can be found for sets with smaller |N-M| for any fixed total number of spins. We find that the optimal POVMs for extracting directional information in these cases can always be expressed in terms of the Fourier basis. Our results show that dimensionality alone cannot explain the greater information content in anti-parallel combinations of spins compared to parallel combinations. In addition, we describe an LOCC protocol which extract optimal directional information when the pointer member is restricted to a small circle and a pair of parallel spins are supplied.Comment: 23 pages, 8 figure

    Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement

    Full text link
    A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there is a relation between mean-field chaos and multi-particle entanglement for BECs in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic superpositions in phase-space occur for conditions for which the system displays mean-field chaos. In the present manuscript, more general highly-entangled states are investigated. Mean-field chaos accelerates the emergence of multi-particle entanglement; the boundaries of stable regions are particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the LPHYS0
    • …
    corecore