1,698 research outputs found
Quantum parallel dense coding of optical images
We propose quantum dense coding protocol for optical images. This protocol
extends the earlier proposed dense coding scheme for continuous variables
[S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially
multimode in space and time optical quantum communication channel. This new
scheme allows, in particular, for parallel dense coding of non-stationary
optical images. Similar to some other quantum dense coding protocols, our
scheme exploits the possibility of sending a classical message through only one
of the two entangled spatially-multimode beams, using the other one as a
reference system. We evaluate the Shannon mutual information for our protocol
and find that it is superior to the standard quantum limit. Finally, we show
how to optimize the performance of our scheme as a function of the
spatio-temporal parameters of the multimode entangled light and of the input
images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on
Quantum Imaging in Journal of Modern Optic
Non-classical properties of quantum wave packets propagating in a Kerr-like medium
We investigate non-classical effects such as fractional revivals, squeezing
and higher-order squeezing of photon-added coherent states propagating through
a Kerr-like medium.The Wigner functions corresponding to these states at the
instants of fractional revivals are obtained, and the extent of
non-classicality quantified.Comment: 8 pages, 10 figure
Quantum teleportation of optical images with frequency conversion
We describe a new version of continuous variables quantum holographic
teleportation of optical images. Unlike the previously proposed scheme, it is
based on the continuous variables quantum entanglement between the light fields
of different frequencies and allows for the wavelength conversion between the
original and the teleported images. The frequency tunable holographic
teleportation protocol can be used as a part of light-matter interface in
parallel quantum information processing and parallel quantum memoryComment: 4 pages, 3 Postscript figures, RevTeX
Pulsed squeezed light: simultaneous squeezing of multiple modes
We analyze the spectral properties of squeezed light produced by means of
pulsed, single-pass degenerate parametric down-conversion. The multimode output
of this process can be decomposed into characteristic modes undergoing
independent squeezing evolution akin to the Schmidt decomposition of the
biphoton spectrum. The main features of this decomposition can be understood
using a simple analytical model developed in the perturbative regime. In the
strong pumping regime, for which the perturbative approach is not valid, we
present a numerical analysis, specializing to the case of one-dimensional
propagation in a beta-barium borate waveguide. Characterization of the
squeezing modes provides us with an insight necessary for optimizing homodyne
detection of squeezing. For a weak parametric process, efficient squeezing is
found in a broad range of local oscillator modes, whereas the intense
generation regime places much more stringent conditions on the local
oscillator. We point out that without meeting these conditions, the detected
squeezing can actually diminish with the increasing pumping strength, and we
expose physical reasons behind this inefficiency
Inseparability criterion for continuous variable systems
An inseparability criterion based on the total variance of a pair of
Einstein-Podolsky-Rosen type operators is proposed for continuous variable
systems. The criterion provides a sufficient condition for entanglement of any
two-party continuous variable states. Furthermore, for all the Gaussian states,
this criterion turns out to be a necessary and sufficient condition for
inseparability.Comment: minor changes in the introduction and ref
Quantum teleportation of EPR pair by three-particle entanglement
Teleportation of an EPR pair using triplet in state of the
Horne-Greenberger-Zeilinger form to two receivers is considered. It needs a
three-particle basis for joint measurement. By contrast the one qubit
teleportation the required basis is not maximally entangled. It consists of the
states corresponding to the maximally entanglement of two particles only. Using
outcomes of measurement both receivers can recover an unknown EPR state however
one of them can not do it separately. Teleportation of the N-particle
entanglement is discussed.Comment: 7 pages, LaTeX, 3 figure
Estimation of pure qubits on circles
Gisin and Popescu [PRL, 83, 432 (1999)] have shown that more information
about their direction can be obtained from a pair of anti-parallel spins
compared to a pair of parallel spins, where the first member of the pair (which
we call the pointer member) can point equally along any direction in the Bloch
sphere. They argued that this was due to the difference in dimensionality
spanned by these two alphabets of states. Here we consider similar alphabets,
but with the first spin restricted to a fixed small circle of the Bloch sphere.
In this case, the dimensionality spanned by the anti-parallel versus parallel
alphabet is now equal. However, the anti-parallel alphabet is found to still
contain more information in general. We generalize this to having N parallel
spins and M anti-parallel spins. When the pointer member is restricted to a
small circle these alphabets again span spaces of equal dimension, yet in
general, more directional information can be found for sets with smaller |N-M|
for any fixed total number of spins. We find that the optimal POVMs for
extracting directional information in these cases can always be expressed in
terms of the Fourier basis. Our results show that dimensionality alone cannot
explain the greater information content in anti-parallel combinations of spins
compared to parallel combinations. In addition, we describe an LOCC protocol
which extract optimal directional information when the pointer member is
restricted to a small circle and a pair of parallel spins are supplied.Comment: 23 pages, 8 figure
Bose-Einstein condensates in a double well: mean-field chaos and multi-particle entanglement
A recent publication [Phys. Rev. Lett. 100, 140408 (2008)] shows that there
is a relation between mean-field chaos and multi-particle entanglement for BECs
in a periodically shaken double well. 'Schrodinger-cat' like mesoscopic
superpositions in phase-space occur for conditions for which the system
displays mean-field chaos. In the present manuscript, more general
highly-entangled states are investigated. Mean-field chaos accelerates the
emergence of multi-particle entanglement; the boundaries of stable regions are
particularly suited for entanglement generation.Comment: 5 Pages, 5 jpg-figures, to be published in the proceedings of the
LPHYS0
Recommended from our members
Phase I study of dose escalation to dominant intraprostatic lesions using high-dose-rate brachytherapy.
PurposeRadiation dose escalation for prostate cancer improves biochemical control but is limited by toxicity. Magnetic resonance spectroscopic imaging (MRSI) can define dominant intraprostatic lesions (DIL). This phase I study evaluated dose escalation to MRSI-defined DIL using high-dose-rate (HDR) brachytherapy.Material and methodsEnrollment was closed early due to low accrual. Ten patients with prostate cancer (T2a-3b, Gleason 6-9, PSA < 20) underwent pre-treatment MRSI, and eight patients had one to three DIL identified. The eight enrolled patients received external beam radiation therapy to 45 Gy and HDR brachytherapy boost to the prostate of 19 Gy in 2 fractions. MRSI images were registered to planning CT images and DIL dose-escalated up to 150% of prescription dose while maintaining normal tissue constraints. The primary endpoint was genitourinary (GU) toxicity.ResultsThe median total DIL volume was 1.31 ml (range, 0.67-6.33 ml). Median DIL boost was 130% of prescription dose (range, 110-150%). Median urethra V120 was 0.15 ml (range, 0-0.4 ml) and median rectum V75 was 0.74 ml (range, 0.1-1.0 ml). Three patients had acute grade 2 GU toxicity, and two patients had late grade 2 GU toxicity. No patients had grade 2 or higher gastrointestinal toxicity, and no grade 3 or higher toxicities were noted. There were no biochemical failures with median follow-up of 4.9 years (range, 2-8.5 years).ConclusionsDose escalation to MRSI-defined DIL is feasible. Toxicity was low but incompletely assessed due to limited patients' enrollment
- …