122 research outputs found
Clinical trial of laronidase in Hurler syndrome after hematopoietic cell transplantation.
BackgroundMucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH. The objective of this study was to evaluate the effects of laronidase on somatic outcomes of patients with MPS IH previously treated with HCT.MethodsThis 2-year open-label pilot study of laronidase included ten patients (age 5-13 years) who were at least 2 years post-HCT and donor engrafted. Outcomes were assessed semi-annually and compared to historic controls.ResultsThe two youngest participants had a statistically significant improvement in growth compared to controls. Development of persistent high-titer anti-drug antibodies (ADA) was associated with poorer 6-min walk test (6MWT) performance; when patients with high ADA titers were excluded, there was a significant improvement in the 6MWT in the remaining seven patients.ConclusionsLaronidase seemed to improve growth in participants <8 years old, and 6MWT performance in participants without ADA. Given the small number of patients treated in this pilot study, additional study is needed before definitive conclusions can be made
DNA condensation and redissolution: Interaction between overcharged DNA molecules
The effective DNA-DNA interaction force is calculated by computer simulations
with explicit tetravalent counterions and monovalent salt. For overcharged DNA
molecules, the interaction force shows a double-minimum structure. The
positions and depths of these minima are regulated by the counterion density in
the bulk. Using two-dimensional lattice sum and free energy perturbation
theories, the coexisting phases for DNA bundles are calculated. A
DNA-condensation and redissolution transition and a stable mesocrystal with an
intermediate lattice constant for high counterion concentration are obtained.Comment: 26 pages, 10 figure
Cardiac abnormalities in adults with the attenuated form of mucopolysaccharidosis type I
Background: Cardiac involvement in mucopolysaccharidosis type I (MPS I) has been studied primarily in its most severe forms. Cardiac involvement, particularly left ventricular (LV) systolic and diastolic function, in the attenuated form of MPS I is less well known. Methods: Cardiac function was prospectively investigated in 9 adult patients with the attenuated form of MPS I. All patients underwent 12-lead electrocardiography, 24 h Holter monitoring and two-dimensional echocardiography including tissue Doppler imaging (TDI). Eighteen age- and sex-matched healthy volunteers served as a control group. Results: Aortic, mitral and tricuspid valve thickening was seen in, respectively, 5 (56%), 4 (44%) and 2 (22%) patients. Moderate mitral valve stenosis was seen in 1 patient and moderate aortic stenosis in 2 patients. All patients had mild-to-moderate aortic and mitral valve regurgitation and 6 patients (67%) had mild-to-moderate tricuspid valve regurgitation. Despite normal LV dimensions, ejection fraction and mass index, MPS patients had lower mean systolic mitral annular velocities (6.1±0.6 vs 9.1±1.4 cm/s, p<0.01) compared to normal control subjects. Similarly, mean early diastolic mitral annular velocities were lower in MPS patients (7.8±0.9 vs 13.3±3.3 cm/s, p<0.01). Conclusion: MPS I patients with the attenuated phenotype have not only valvular abnormalities but also LV diastolic and systolic abnormalities
The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt
The persistence length of a single, intrinsically rigid polyelectrolyte
chain, above the Manning condensation threshold is investigated theoretically
in presence of added salt. Using a loop expansion method, the partition
function is consistently calculated, taking into account corrections to
mean-field theory. Within a mean-field approximation, the well-known results of
Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that
density correlations between counterions and thermal fluctuations reduce the
stiffness of the chain, indicating an effective attraction between monomers for
highly charged chains and multivalent counterions. This attraction results in a
possible mechanical instability (collapse), alluding to the phenomenon of DNA
condensation. In addition, we find that more counterions condense on slightly
bent conformations of the chain than predicted by the Manning model for the
case of an infinite cylinder. Finally, our results are compared with previous
models and experiments.Comment: 13 pages, 2 ps figure
Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management
The mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders caused by the absence of functional enzymes that contribute to the degradation of glycosaminoglycans (GAGs). The progressive systemic deposition of GAGs results in multi-organ system dysfunction that varies with the particular GAG deposited and the specific enzyme mutation(s) present. Cardiac involvement has been reported in all MPS syndromes and is a common and early feature, particularly for those with MPS I, II, and VI. Cardiac valve thickening, dysfunction (more severe for left-sided than for right-sided valves), and hypertrophy are commonly present; conduction abnormalities, coronary artery and other vascular involvement may also occur. Cardiac disease emerges silently and contributes significantly to early mortality
Anaesthesia and airway management in mucopolysaccharidosis
Abstract This paper provides a detailed overview and dis-cussion of anaesthesia in patients with mucopolysacchari-dosis (MPS), the evaluation of risk factors in these patients and their anaesthetic management, including emergency airway issues. MPS represents a group of rare lysosomal storage disorders associated with an array of clinical mani-festations. The high prevalence of airway obstruction and restrictive pulmonary disease in combination with cardio-vascular manifestations poses a high anaesthetic risk to these patients. Typical anaesthetic problems include airway obstruction after induction or extubation, intubation diffi-culties or failure [can’t intubate, can’t ventilate (CICV)], possible emergency tracheostomy and cardiovascular and cervical spine issues. Because of the high anaesthetic risk, the benefits of a procedure in patients with MPS shoul
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants
Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy
Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake
- …