3,705 research outputs found
Charmonium Production from the Secondary Collisions at LHC Energy
We consider the charmonium production in thermalized hadronic medium created
in ultrarelativistic heavy ion collisions at LHC energy.
The calculations for the secondary and production by annihilation are performed within a kinetic model taking into account the
space-time evolution of a longitudinally and transversely expanding medium. We
show that the secondary charmonium production appears almost entirely during
the mixed phase and it is very sensitive to the charmonium dissociation cross
section with co-moving hadrons. Within the most likely scenario for the
dissociation cross section of the mesons their regeneration in the
hadronic medium will be negligible. The secondary production of mesons
however, due to their large cross section above the threshold, can
substantially exceed the primary yield.Comment: ps file 11
Production of Strange Clusters and Strange Matter in Nucleus-Nucleus Collisions at the AGS
Production probabilities for strange clusters and strange matter in Au+Au
collisions at AGS energy are obtained in the thermal fireball model. The only
parameters of the model, the baryon chemical potential and temperature, were
determined from a description of the rather complete set of hadron yields from
Si+nucleus collisions at the AGS. For the production of light nuclear fragments
and strange clusters the results are similar to recent coalescence model
calculations. Strange matter production with baryon number larger than 10 is
predicted to be much smaller than any current experimental sensitivities.Comment: 9 Pages (no figures
Hadron production in ultra-relativistic nuclear collisions and the QCD phase boundary
We update briefly our understanding of hadron production in relativistic
nucleus-nucleus collisions in terms of statistical models with emphasis on the
relation of the data to the QCD phase boundary and on a puzzle in the beam
energy dependence.Comment: invited paper, ICPAQGP conference, Kolkata, India, Feb. 200
On Charm Production near the Phase Boundary
We discuss aspects of the statistical hadronization model for the production
of mesons with open and hidden charm in ultra-relativistic nuclear collisions.
Emphasis is placed on what can be inferred from the dependence of the yield of
charmonia on the number of participants in the collisions.Comment: Invited Paper, NAN Conference, Darmstadt, Oct. 2000, final version,
expanded discussion on results at collider energies, Nucl. Phys. A. (in
print). Dedicated to Achim Richter in honor of his 60th birthda
Thermal description of hadron production in e+e- collisions revisited
We present a comprehensive analysis of hadron production in e+e- collisions
at different center-of-mass energies in the framework of the statistical model
of the hadron resonance gas. The model is formulated in the canonical ensemble
with exact conservation of all relevant quantum numbers. The parameters of the
underlying model were determined using a fit to the average multiplicities of
the latest measurements at = 10, 29-35, 91 and 130-200 GeV. The
results demonstrate that, within the accuracy of the experiments, none of the
data sets is satisfactorily described with this approach, calling into question
the notion that particle production in e+e- collisions is thermal in origin.Comment: 13 pages, 3 figures; v2: final version accepted for publication in
Phys. Lett.
Statistical hadronization of charm at SPS, RHIC and LHC
We study the production of charmonia and charmed hadrons for nucleus-nucleus
collisions at SPS, RHIC, and LHC energies within the framework of the
statistical hadronization model. Results from this model are compared to the
observed centrality dependence of J/psi production at SPS energy. We further
provide predictions for the centrality dependence of the production of open and
hidden charm mesons at RHIC and LHC.Comment: Contribution to Quark Matter 2002, 4 pages, 3 figures; revised
version including charmed hyperons (omitted in v1
Hadron production in Au-Au collisions at RHIC
We present an analysis of particle production yields measured in central
Au-Au collisions at RHIC in the framework of the statistical thermal model. We
demonstrate that the model extrapolated from previous analyses at SPS and AGS
energy is in good agreement with the available experimental data at GeV implying a high degree of chemical equilibration. Performing a
fit to the data, the range of thermal parameters at chemical freezeout
is determined. At present, the best agreement of the model and the data is
obtained with the baryon chemical potential MeV and
temperature MeV. More ratios, such as multistrange baryon to
meson, would be required to further constrain the chemical freezeout
conditions. Extrapolating thermal parameters to higher energy, the predictions
of the model for particle production in Au-Au reactions at GeV
are also given.Comment: Final version, minor changes to text and figures. To appear in Phys.
Lett.
Investigation of background subtraction techniques for high mass dilepton physics
The signals in high mass dilepton spectroscopy with nucleus-nucleus
collisions at collider energies are superimposed on a generally large
combinatorial background. Because this background contains a significant
correlated like-sign component originating from B meson decays, the "like-sign"
method to determine the background is inappropriate. We discuss strategies to
deal with the correlations in the background. By taking advantage of the B
meson oscillation mechanism and of the particular features of B meson decays a
new method to measure the bbbar production cross-section is proposed.Comment: 19 pages (RevTex) 6 figures, final version, to appear in Nucl. Instr.
Methods
The horn, the hadron mass spectrum and the QCD phase diagram - the statistical model of hadron production in central nucleus-nucleus collisions
We present the status of the description of hadron production in central
nucleus-nucleus collisions within the statistical model . The recent inclusion
of very high-mass resonances and the sigma meson leads to an improved
description of the data, in particular the energy dependence of the K+/pi+
ratio at SPS energies (``the horn''). The connection to the QCD phase diagram
is discussed.Comment: 4 pages, 3 figures; presented at the Nucleus-Nucleus 2009 conference,
Beijing, Aug. 200
- …
