26 research outputs found
Effect of adherence to primaquine on the risk of Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis
Background: Imperfect adherence is a major barrier to effective primaquine radical cure of Plasmodium vivax. This study investigated the effect of reduced adherence on the risk of P. vivax recurrence.
Methods: Efficacy studies of patients with uncomplicated P. vivax malaria, including a treatment arm with daily primaquine, published between January 1999 and March 2020 were identified. Individual patient data from eligible studies were pooled using standardized methodology. Adherence to primaquine was inferred from i) the percentage of supervised doses and ii) the total mg/kg dose received compared to the target total mg/kg dose per protocol. The effect of adherence to primaquine on the incidence of P. vivax recurrence between days 7 and 90 was investigated by Cox regression analysis.
Results: Of 82 eligible studies, 32 were available including 6917 patients from 18 countries. For adherence assessed by percentage of supervised primaquine, 2790 patients (40.3%) had poor adherence (≤ 50%) and 4127 (59.7%) had complete adherence. The risk of recurrence by day 90 was 14.0% [95% confidence interval: 12.1–16.1] in patients with poor adherence compared to 5.8% [5.0–6.7] following full adherence; p = 0.014. After controlling for age, sex, baseline parasitaemia, and total primaquine dose per protocol, the rate of the first recurrence was higher following poor adherence compared to patients with full adherence (adjusted hazard ratio (AHR) = 2.3 [1.8–2.9]). When adherence was quantified by total mg/kg dose received among 3706 patients, 347 (9.4%) had poor adherence, 88 (2.4%) had moderate adherence, and 3271 (88.2%) had complete adherence to treatment. The risks of recurrence by day 90 were 8.2% [4.3–15.2] in patients with poor adherence and 4.9% [4.1–5.8] in patients with full adherence; p < 0.001.
Conclusion: Reduced adherence, including less supervision, increases the risk of vivax recurrence
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Primaquine for uncomplicated Plasmodium vivax malaria in children younger than 15 years: a systematic review and individual patient data meta-analysis.
BACKGROUND: Primaquine, the only widely available treatment to prevent relapsing Plasmodium vivax malaria, is produced as 15 mg tablets, and new paediatric formulations are being developed. To inform the optimal primaquine dosing regimen for children, we aimed to determine the efficacy and safety of different primaquine dose strategies in children younger than 15 years. METHODS: We undertook a systematic review (Jan 1, 2000-July 26, 2024) for P vivax efficacy studies with at least one treatment group that was administered primaquine over multiple days, that enrolled children younger than 15 years, that followed up patients for at least 28 days, and that had data available for inclusion by June 30, 2022. Patients were excluded if they were aged 15 years or older, presented with severe malaria, received adjunctive antimalarials within 14 days of diagnosis, commenced primaquine more than 7 days after starting schizontocidal treatment, had a protocol violation in the original study, or were missing data on age, sex, or primaquine dose. Available individual patient data were collated and standardised. To evaluate efficacy, the risk of recurrent P vivax parasitaemia between days 7 and 180 was assessed by time-to-event analysis for different total mg/kg primaquine doses (low total dose of ∼3·5 mg/kg and high total dose of ∼7 mg/kg). To evaluate tolerability and safety, the following were assessed by daily mg/kg primaquine dose (low daily dose of ∼0·25 mg/kg, intermediate daily dose of ∼0·5 mg/kg, and high daily dose of ∼1 mg/kg): gastrointestinal symptoms (vomiting, anorexia, or diarrhoea) on days 5-7, haemoglobin decrease of at least 25% to less than 7g/dL (severe haemolysis), absolute change in haemoglobin from day 0 to days 2-3 or days 5-7, and any serious adverse events within 28 days. This study is registered with PROSPERO, CRD42021278085. FINDINGS: In total, 3514 children from 27 studies and 15 countries were included. The cumulative incidence of recurrence by day 180 was 51·4% (95% CI 47·0-55·9) following treatment without primaquine, 16·0% (12·4-20·3) following a low total dose of primaquine, and 10·2% (8·4-12·3) following a high total dose of primaquine. The hazard of recurrent P vivax parasitaemia in children younger than 15 years was reduced following primaquine at low total doses (adjusted hazard ratio [HR] 0·17, 95% CI 0·11-0·25) and high total doses (0·09, 0·07-0·12), compared with no primaquine. In 525 children younger than 5 years, the relative rates of recurrence were also reduced, with an adjusted HR of 0·33 (95% CI 0·18-0·59) for a low total dose and 0·13 (0·08-0·21) for a high total dose of primaquine compared with no primaquine. The rate of recurrence following a high total dose was reduced compared with a low dose in children younger than 15 years (adjusted HR 0·54, 95% CI 0·35-0·85) and children younger than 5 years (0·41, 0·21-0·78). Compared with no primaquine, children treated with any dose of primaquine had a greater risk of gastrointestinal symptoms on days 5-7 after adjustment for confounders, with adjusted risks of 3·9% (95% CI 0-8·6) in children not treated with primaquine, 9·2% (0-18·7) with a low daily dose of primaquine, 6·8% (1·7-12·0) with an intermediate daily dose of primaquine, and 9·6% (4·8-14·3) with a high daily dose of primaquine. In children with 30% or higher glucose-6-phosphate dehydrogenase (G6PD) activity, there were few episodes of severe haemolysis following no primaquine (0·4%, 95% CI 0·1-1·5), a low daily dose (0·0%, 0·0-1·6), an intermediate daily dose (0·5%, 0·1-1·4), or a high daily dose (0·7%, 0·2-1·9). Of 15 possibly drug-related serious adverse events in children, two occurred following a low, four following an intermediate, and nine following a high daily dose of primaquine. INTERPRETATION: A high total dose of primaquine was highly efficacious in reducing recurrent P vivax parasitaemia in children compared with a low dose, particularly in children younger than 5 years. In children treated with high and intermediate daily primaquine doses compared with low daily doses, there was no increase in gastrointestinal symptoms or haemolysis (in children with 30% or higher G6PD activity), but there were more serious adverse events. FUNDING: Medicines for Malaria Venture, Bill & Melinda Gates Foundation, and Australian National Health and Medical Research Council
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
CYP2D6 activity and the risk of recurrence of Plasmodium vivax malaria in the Brazilian Amazon: a prospective cohort study
Abstract Background CYP2D6 pathway mediates the activation of primaquine into active metabolite(s) in hepatocytes. CYP2D6 is highly polymorphic, encoding CYP2D6 isoforms with normal, reduced, null or increased activity. It is hypothesized that Plasmodium vivax malaria patients with defective CYP2D6 function would be at increased risk for primaquine failure to prevent recurrence. The aim of this study was to investigate the association of CYP2D6 polymorphisms and inferred CYP2D6 phenotypes with malaria recurrence in patients from the Western Brazilian Amazon, following chloroquine/primaquine combined therapy. Methods The prospective cohort consisted of P. vivax malaria patients who were followed for 6 months after completion of the chloroquine/primaquine therapy. Recurrence was defined as one or more malaria episodes, 28–180 days after the initial episode. Genotyping for nine CYP2D6 SNPs and copy number variation was performed using TaqMan assays in a Fast 7500 Real-Time System. CYP2D6 star alleles (haplotypes), diplotypes and CYP2D6 phenotypes were inferred, and the activity score system was used to define the functionality of the CYP2D6 diplotypes. CYP2D6 activity scores (AS) were dichotomized at ≤ 1 (gPM, gIM and gNM-S phenotypes) and ≥ 1.5 (gNM-F and gUM phenotypes). Results Genotyping was successfully performed in 190 patients (44 with recurrence and 146 without recurrences). Recurrence incidence was higher in individuals presenting reduced activity CYP2D6 phenotypes (adjusted relative risk = 1.89, 95% CI 1.01–3.70; p = 0.049). Attributable risk and population attributable fraction were 11.5 and 9.9%, respectively. The time elapsed from the first P. vivax malaria episode until the recurrence did not differ between patients with AS of ≤ 1 versus ≥ 1.5 (p = 0.917). Conclusions The results suggest that CYP2D6 polymorphisms are associated with increased risk of recurrence of vivax malaria, following chloroquine–primaquine combined therapy. This association is interpreted as the result of reduced conversion of primaquine into its active metabolites in patients with reduced CYP2D6 enzymatic activity
<it>Pfatp6 </it>molecular profile of <it>Plasmodium falciparum </it>isolates in the western Brazilian Amazon
<p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance has emerged as one of the biggest challenges confronting the worldwide effort to control malaria. The appearance of chloroquine and multi-drug resistance had devastating effects on therapeutic efficacy of former first-line agents. Artemisinin has proven to be an excellent therapeutic alternative to fill the void in chemotherapeutic options left by resistance mechanisms. At the time of introduction, no resistance to artemisinins had been recorded, and artemisinins demonstrated excellent parasite reduction rates. In an attempt to protect artemisinin efficacy, the World Health Organization (WHO) made artemisinin-based combination therapy (ACT) its official first-line treatment recommendation for uncomplicated <it>Plasmodium falciparum </it>in 2006. In Brazil, artemether/lumefantrine became the Brazilian Malaria Control Programme's official treatment recommendation in 2007. The sarco/endoplasmic reticulum Ca<sup>2+ - </sup>ATPase ortholog of <it>P. falciparum </it>(<it>pfatp</it>6) has been suggested as one of the targets of artemisinins. Consequently, <it>pfatp</it>6 gene polymorphisms are being investigated as markers of artemisinin resistance elsewhere. The goal of this work was to describe the molecular profile of <it>pfatp</it>6 in <it>P. falciparum </it>isolates from different localities in the Amazonas State.</p> <p>Methods</p> <p>DNA polymorphisms of the <it>pfatp6 </it>gene in 80 <it>P. falciparum </it>isolates from 11 municipalities of the Amazonas State (Western Brazilian Amazon), before and after the introduction of ACT in the Brazilian anti-malarial guidelines, were analysed by automatic sequencing. Mutations in the <it>pfatp6 </it>gene were searched using Mutation Surveyor v3.25 software.</p> <p>Results</p> <p>The <it>P. falciparum pfatp6 </it>gene presented polymorphisms at codons 37, 630 and 898. The R37K mutation was found in 16% of the samples, A630S in 32% and I898I in 52%. No S769N mutation, however, was detected in the analysed samples.</p> <p>Conclusion</p> <p>Despite the small number of samples, data presented here provide baseline information about polymorphisms of <it>pfatp6 </it>gene before and after exposure to ACT in a low transmission area, which will help to infer drug selection pressure in this area in the future.</p