403 research outputs found
Recommended from our members
Performance of keck adaptive optics with sodium laser guide star
The Keck telescope adaptive optics system is designed to optimize performance in he 1 to 3 micron region of observation wavelengths (J, H, and K astronomical bands). The system uses a 249 degree of freedom deformable mirror, so that the interactuator spacing is 56 cm as mapped onto the 10 meter aperture. 56 cm is roughly equal to r0 at 1.4 microns, which implies the wavefront fitting error is 0.52 ({lambda}/2{pi})({ital d}/{ital r}{sub 0}){sup 5/6} = 118 nm rms. This is sufficient to produce a system Strehl of 0.74 at 1.4 microns if all other sources of error are negligible, which would be the case with a bright natural guidestar and very high control bandwidth. Other errors associated with the adaptive optics will however contribute to Strehl degradation, namely, servo bandwidth error due to inability to reject all temporal frequencies of the aberrated wavefront, wavefront measurement error due to finite signal-to-noise ratio in the wavefront sensor, and, in the case of a laser guidestar, the so-called cone effect where rays from the guidestar beacon fail to sample some of the upper atmosphere turbulence. Cone effect is mitigated considerably by the use of the very high altitude sodium laser guidestar (90 km altitude), as opposed to Rayleigh beacons at 20 km. However, considering the Keck telescope`s large aperture, this is still the dominating wavefront error contributor in the current adaptive optics system design
Recommended from our members
Conceptual Design of a Prototype LSST Database
This document describes a preliminary design for Prototype LSST Database (LSST DB). They identify key components and data structures and provide an expandable conceptual schema for the database. The authors discuss the potential user applications and post-processing algorithm to interact with the database, and give a set of example queries
From reading numbers to seeing ratios: a benefit of icons for risk comprehension
Promoting a better understanding of statistical data is becoming increasingly important for improving risk comprehension and decision-making. In this regard, previous studies on Bayesian problem solving have shown that iconic representations help infer frequencies in sets and subsets. Nevertheless, the mechanisms by which icons enhance performance remain unclear. Here, we tested the hypothesis that the benefit offered by icon arrays lies in a better alignment between presented and requested relationships, which should facilitate the comprehension of the requested ratio beyond the represented quantities. To this end, we analyzed individual risk estimates based on data presented either in standard verbal presentations (percentages and natural frequency formats) or as icon arrays. Compared to the other formats, icons led to estimates that were more accurate, and importantly, promoted the use of equivalent expressions for the requested probability. Furthermore, whereas the accuracy of the estimates based on verbal formats depended on their alignment with the text, all the estimates based on icons were equally accurate. Therefore, these results support the proposal that icons enhance the comprehension of the ratio and its mapping onto the requested probability and point to relational misalignment as potential interference for text-based Bayesian reasoning. The present findings also argue against an intrinsic difficulty with understanding single-event probabilities
Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects
A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 mM to 1.20 mM, compared to doxorubicin GI50 value = 1.10 mM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe
Recommended from our members
Phase retrieval for adaptive optics system calibration
Our objective in this report is to develop methods to determine the output pupil wavefront using intensity measurements directly from the science detector. This wavefront can then be used to determine a reference wavefront which will precorrect for the non-common-path aberrations and produce the desired wavefront at the science detector. We describe two phase retrieval algorithms that can be used and a set of simulation studies of AO system calibration. We present the initial experimental results of applying this technique in calibration of the Lick Observatory laser guidestar AO system in a later paper
Recommended from our members
Middleware for Astronomical Data Analysis Pipelines
In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools
HIGH RESOLUTION WAVEFRONT CONTROL OF HIGH-POWER LASER SYSTEMS
Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more than two orders of magnitude greater than the best Deformable Mirrors currently made. Even with the increased spatial resolution, the cost of these devices is nearly two orders of magnitude less than the cost of the largest deformable mirror
- …