2 research outputs found
Seasonal variations of nosocomial infections
FĂĽr viele Infektionskrankheiten sind saisonale Schwankungen in der Inzidenz
bekannt, aber es ist bisher nicht in groĂźem Umfang und systematisch untersucht
worden, ob diese Schwankungen auch bei nosokomialen Infektionen bestehen. Dies
ist von Bedeutung, da relevante saisonale Schwankungen bei der Planung von
Studien zur Infektionsprävention berücksichtigt werden müssten und zudem
eventuell zu saisonalen Anpassungen von HygienemaĂźnahmen fĂĽhren wĂĽrden. Im
Rahmen dieser Untersuchung sollten saisonale Schwankungen in der
Inzidenzdichte der wichtigsten nosokomialen Infektionen und ihrer häufigsten
Erreger ermittelt werden. Hierzu wurde die Referenzdatenbank der Surveillance-
Module fĂĽr Intensivpatienten (ITS-KISS) und operierte Patienten (OP-KISS) des
Krankenhaus-Infektions-Surveillance-Systems (KISS) fĂĽr den Zeitraum Januar
2000 bis Dezember 2009 analysiert. Die Definition der Jahreszeiten erfolgte
anhand von frei verfĂĽgbaren Klimadaten des Deutschen Wetterdienstes. FĂĽr ITS-
KISS wurden Inzidenzdichten (Infektionen/1000 Patiententage) und
Inzidenzdichteverhältnisse, für OP-KISS wurden Inzidenzen (Infektionen/100
operierte Patienten) und Relative Risiken, jeweils mit den
95%-Konfidenzintervallen berechnet. In die Analyse gingen 8.680.283
Patiententage und 42.603 Infektionen aus 597 Intensivstationen sowie 767.970
Operationen und 13.586 postoperative Wundinfektionen aus 595 operativen
Abteilungen ein. Es wurde gegenĂĽber der Ăśbergangszeit im FrĂĽhling/Herbst
sowohl eine signifi-kante Zunahme der primären Sepsis im Sommer
(Inzidenzdichteverhältnis 1,10 [1,05-1,16]) und eine signifikante Abnahme im
Winter (Inzidenzdichteverhältnis 0,89 [0,84-0,94]) als auch eine signifikante
Zunahme der Infektionen der unteren Atemwege im Sommer (Inzidenzdichte-
verhältnis 1,08 [1,05-1,12]) und eine signifikante Abnahme im Winter
(Inzidenzdichteverhältnis 0,96 [0,93-0,999]) festgestellt. Auch im Bereich der
postoperativen Wundinfektionen wurde eine signifikante Zunahme im Sommer
(Relatives Risiko 1,11 [1,06-1,15]) und eine signifikante Abnahme im Winter
(Relatives Risiko 0,95 [0,91-0,99]) ermittelt. Bei den Erregern noso-komialer
Infektionen konnten Nonfermenter wie Pseudomonas aeruginosa und Acinetobacter
baumannii, Enterobakterien wie Enterobacter spp. und Klebsiella spp. und
einige andere Erreger als saisonale Infektionserreger ermittelt werden.For many infectious diseases, seasonal variations in incidence are known, but
it has not yet been investigated extensively and systematically whether these
variations also exist in nosocomial infections. This is important because
seasonal fluctuations should be considered relevant in the planning of studies
on infection control and may result in seasonal adjustments of infection
control measures. This study was performed in order to determine seasonal
variations in the incidence density of nosocomial infections and their most
important pathogens. For this purpose, the national reference database for the
surveillance of nosocomial infections in intensive care patients (ICU-KISS)
and operated patients (OP-KISS) of the German hospital infection surveillance
system (KISS) was analyzed for the period from January 2000 to December 2009.
The definition of the seasons was based on freely available climate data from
the German weather service "Deutscher Wetterdienst". For ICU-KISS, incidence
densities (infections/1000 patient-days) and incidence density ratios, for OP-
KISS incidences (infections/100 operated patients) and relative risks, were
calculated respectively with the 95% confidence intervals. The analysis was
based on 8,680,283 patient-days and 42,603 infections from 597 intensive care
units and 767,970 operated patients and 13,586 surgical site infections in 595
surgical departments. The results showed both a significant increase in
primary sepsis in the summer period (incidence density ratio 1.10 [1.05 to
1.16]) and a significant decrease in winter period (incidence density ratio
0.89 [0.84 -0.94]) and also a significant increase in lower respiratory tract
infections in the summer period (incidence density ratio 1.08 [1.05 to 1.12])
and a significant decrease in winter (incidence density ratio 0.96 [0.93
-0.999]) period. The surgical site infections also showed a significant
increase in summer (relative risk 1.11 [1.06 to 1.15]) and a significant
decrease in winter (relative risk 0.95 [0.91 to 0.99]). Among the most
important pathogens of nosocomial infections nonfermenting bacteria such as
pseudomonas aeruginosa and acinetobacter baumannii, enterobacteria such as
enterobacter spp. and klebsiella spp. and some other pathogens were identified
as seasonal infectious agents. The finding that seasonal effects exist in
nosocomial infections makes it necessary to consider these effects in the
planning, implementation and evaluation of studies. Since the extent of
seasonal effects is relatively low, further studies will be necessary to
evaluate the effect of the introduction of seasonally adjusted hygiene
measures
Clinical evaluation of a web-based personalized recommendation system with electronic health record interface to optimize healthcare resources during SARS-CoV-2 surges
Abstract During the SARS-CoV-2 pandemic, the German healthcare system faced challenges of efficiently allocating testing resources. To address this, we developed an open-source personalized recommendation system (PRS) called “CovApp”. The PRS utilized a questionnaire to estimate the risk of infection, provided personalized recommendations such as testing, self-isolation, or quarantine, and featured QR code data transmission to electronic health records. The PRS served up to 2.5 million monthly users and received 67,000 backlinks from 1800 domains. We clinically evaluated the PRS at the SARS-CoV-2 testing facility at Charité and observed a 21.7% increase in patient throughput per hour and a 22.5% increase in patients per day. Patients using the PRS were twice as likely to belong to the High Risk group eligible for testing (18.6% vs. 8.9%, p < 0.0001), indicating successful compliance with CovApp’s recommendations. CovApp served as a digital bridge between the population and medical staff and significantly improved testing efficiency. As an open-source platform, CovApp can be readily customized to address emerging public health crises. Further, given the EHR interface, the app is of great utility for other applications in clinical settings