19,799 research outputs found
Sandhill Crane Roost Selection, Human Disturbance, and Forage Resources
Sites used for roosting represent a key habitat requirement for many species of birds because availability and quality of roost sites can influence individual fitness. Birds select roost sites based on numerous factors, requirements, and motivations, and selection of roosts can be dynamic in time and space because of various ecological and environmental influences. For sandhill cranes (Antigone canadensis) at their main spring staging area along the Platte River in south-central Nebraska, USA, past investigations of roosting cranes focuse donphysical channel characteristics related to perceived security as motivating roost distribution.We used 6,310 roost sites selected by 313 sandhill cranes over 5 spring migration seasons (2003–2007) to quantify resource selection functions of roost sites on the central Platte River using a discrete choice analysis. Sandhill cranes generally showed stronger selection for wider channels with shorter bank vegetation situated farther from potential human disturbance features such as roads, bridges, and dwellings.Furthermore, selection for roost sites with preferable physical characteristics (wide channels with short bank vegetation) was more resilient to nearby disturbance features than more narrow channels with taller bank vegetation. The amount of cornfields surrounding sandhill crane roost sites positively influenced relative probability of use but only for more narrow channels \u3c100m and those with shorter bank vegetation. We confirmed key resource features that sandhill cranes selected at river channels along the Platte River, and after incorporating spatial variation due to human disturbance, our understanding of roost site selection was more robust, providing insights on how disturbance may interact with physical habitat features. Managers can use information on roost-site selection when developing plans to increase probability of crane use at existing roost sites and to identify new areas for potential use if existing sites become limited
Investigation of aeroelastic stability phenomena of a helicopter by in-flight shake test
The analytical capability of the helicopter stability program is discussed. The parameters which are found to be critical to the air resonance characteristics of the soft in-plane hingeless rotor systems are detailed. A summary of two model test programs, a 1/13.8 Froude-scaled BO-105 model and a 1.67 meter (5.5 foot) diameter Froude-scaled YUH-61A model, are presented with emphasis on the selection of the final parameters which were incorporated in the full scale YUH-61A helicopter. Model test data for this configuration are shown. The actual test results of the YUH-61A air resonance in-flight shake test stability are presented. Included are a concise description of the test setup, which employs the Grumman Automated Telemetry System (ATS), the test technique for recording in-flight stability, and the test procedure used to demonstrate favorable stability characteristics with no in-plane damping augmentation (lag damper removed). The data illustrating the stability trend of air resonance with forward speed and the stability trend of ground resonance for percent airborne are presented
High temperature limit in static backgrounds
We prove that the hard thermal loop contribution to static thermal amplitudes
can be obtained by setting all the external four-momenta to zero before
performing the Matsubara sums and loop integrals. At the one-loop order we do
an iterative procedure for all the 1PI one-loop diagrams and at the two-loop
order we consider the self-energy. Our approach is sufficiently general to the
extent that it includes theories with any kind of interaction vertices, such as
gravity in the weak field approximation, for space-time dimensions. This
result is valid whenever the external fields are all bosonic.Comment: 15 pages, 11 figures. To be published in Physical Review
Blood transfusion as a risk factor for non-Hodgkin lymphoma.
In a case-control study of 280 out of 426 consecutive patients with a recent diagnosis of non-Hodgkin lymphoma (NHL) and 1827 control subjects, 53 (19%) and 230 (13%) respectively had received blood transfusions 1 year or more before the interview. Using an age- and sex-stratified analysis the odds ratio (OR) for transfusion was 1.74 (95% CI 1.24-2.44). ORs were also determined for transfusions received in the intervals 1-5, 6-15, 16-25 and > or = 26 years before diagnosis. In the interval 6-15 years, the OR for transfusion was 2.83 (95% CI 1.60-4.99) whereas ORs for transfusions received in other intervals were lower and not significantly elevated. Histological diagnoses (Kiel classification) and results of staging procedures were known for 185 patients. For low-grade NHL of nodal B-cell chronic lymphocytic leukaemia (B-CLL) or immunocytoma type, the OR for transfusions was 4.15 (95% CI 1.92-9.01). For low-grade nodal lymphomas of follicle centre cell type and high-grade nodal lymphomas, no relation to transfusions could be demonstrated. For high-grade extranodal lymphoma as sole manifestation, OR for transfusions was 3.27 (95% CI 1.30-8.24). It is concluded that blood transfusion may be a risk factor for NHLs especially those of B-CLL or immunocytoma type and for high-grade extranodal lymphoma
Deep Extragalactic X-ray Surveys
Deep surveys of the cosmic X-ray background are reviewed in the context of
observational progress enabled by the Chandra X-ray Observatory and the X-ray
Multi-Mirror Mission-Newton. The sources found by deep surveys are described
along with their redshift and luminosity distributions, and the effectiveness
of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key
results from deep surveys are highlighted including (1) measurements of AGN
evolution and the growth of supermassive black holes, (2) constraints on the
demography and physics of high-redshift AGN, (3) the X-ray AGN content of
infrared and submillimeter galaxies, and (4) X-ray emission from distant
starburst and normal galaxies. We also describe some outstanding problems and
future prospects for deep extragalactic X-ray surveys.Comment: 32 pages; Annu. Rev. Astron. Astrophys., Volume 43 (2005); updated to
match accepted versio
Thermal Effective Lagrangian of Static Gravitational Fields
We compute the effective Lagrangian of static gravitational fields
interacting with thermal fields. Our approach employs the usual imaginary time
formalism as well as the equivalence between the static and space-time
independent external gravitational fields. This allows to obtain a closed form
expression for the thermal effective Lagrangian in space-time dimensions.Comment: Accepted for publication in the Physical Review
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
An Axisymmetric Gravitational Collapse Code
We present a new numerical code designed to solve the Einstein field
equations for axisymmetric spacetimes. The long term goal of this project is to
construct a code that will be capable of studying many problems of interest in
axisymmetry, including gravitational collapse, critical phenomena,
investigations of cosmic censorship, and head-on black hole collisions. Our
objective here is to detail the (2+1)+1 formalism we use to arrive at the
corresponding system of equations and the numerical methods we use to solve
them. We are able to obtain stable evolution, despite the singular nature of
the coordinate system on the axis, by enforcing appropriate regularity
conditions on all variables and by adding numerical dissipation to hyperbolic
equations.Comment: 19 pages, 9 figure
Theory of Type-II Superconductors with Finite London Penetration Depth
Previous continuum theory of type-II superconductors of various shapes with
and without vortex pinning in an applied magnetic field and with transport
current, is generalized to account for a finite London penetration depth
lambda. This extension is particularly important at low inductions B, where the
transition to the Meissner state is now described correctly, and for films with
thickness comparable to or smaller than lambda. The finite width of the surface
layer with screening currents and the correct dc and ac responses in various
geometries follow naturally from an equation of motion for the current density
in which the integral kernel now accounts for finite lambda. New geometries
considered here are thick and thin strips with applied current, and `washers',
i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure
- …