71 research outputs found

    AsChip:A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic

    Get PDF
    Arsenic (As) is a ubiquitous toxic element adversely affecting human health. Microbe-mediated cycling of As is largely mediated by detoxification and energy metabolism in microorganisms. We here report the development of a novel high-throughput qPCR (HT-qPCR) chip (AsChip) for comprehensive profiling of genes involved in microbial As cycling (here collectively termed “As genes”). AsChip contained 81 primer sets targeting 19 As genes and the 16S rRNA gene as a reference gene. Gene amplicon sequencing showed high identity (>96%) of newly designed primers corresponding to their targets. AsChip displayed high sensitivity (plasmid template serial dilution test; r = −0.99), with more than 96% of all PCR assays yielding true positive signals. R2 coefficients for standard curves and PCR amplification efficiencies averaged 0.98 and 0.99, respectively. A high correlation between CT values obtained by AsChip and conventional qPCR was obtained (r = 0.962, P < 0.001). Finally, we successfully applied AsChip on soil samples from a chromium–copper–arsenic-contaminated field site and identified diverse As genes with total abundance average of 0.4 As gene copies per 16S rRNA. Our results indicate that AsChip constitutes a robust tool for comprehensive quantitative profiling of As genes in environmental samples

    Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance

    Get PDF
    There is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.(1)Peer reviewe
    corecore