5 research outputs found

    Longitudinal, natural history study reveals the disease burden of idiopathic multicentric Castleman disease

    Get PDF
    Idiopathic multicentric Castleman disease (iMCD) is a rare hematologic disorder with heterogeneous presentations ranging from moderate constitutional symptoms to life-threatening multiorgan system involvement. iMCD patients present with vastly different clinical subtypes, with some patients demonstrating thrombocytopenia, anasarca, fever/elevated C-reactive protein, reticulin fibrosis/renal failure, and organomegaly (TAFRO) and others demonstrating more mild/moderate symptoms with potential for severe disease (not otherwise specified, NOS). Due to its rarity and heterogeneity, the natural history and long-term burden of iMCD are poorly understood. We investigated real-world medical data from ACCELERATE, a large natural history registry of Castleman disease patients, to better characterize the long-term disease burden experienced by these patients. We found that iMCD-TAFRO patients face significant hospitalization burden, requiring more time in the hospital than iMCD-NOS patients during the year surrounding diagnosis (median [IQR] 36 [18, 61] days vs. 0 [0, 4] days;

    International evidence-based consensus diagnostic and treatment guidelines for unicentric Castleman disease.

    Get PDF
    Castleman disease (CD) includes a group of rare and heterogeneous disorders with characteristic lymph node histopathological abnormalities. CD can occur in a single lymph node station, which is referred to as unicentric CD (UCD). CD can also involve multicentric lymphadenopathy and inflammatory symptoms (multicentric CD [MCD]). MCD includes human herpesvirus-8 (HHV-8)-associated MCD, POEMS-associated MCD, and HHV-8-/idiopathic MCD (iMCD). The first-ever diagnostic and treatment guidelines were recently developed for iMCD by an international expert consortium convened by the Castleman Disease Collaborative Network (CDCN). The focus of this report is to establish similar guidelines for the management of UCD. To this purpose, an international working group of 42 experts from 10 countries was convened to establish consensus recommendations based on review of treatment in published cases of UCD, the CDCN ACCELERATE registry, and expert opinion. Complete surgical resection is often curative and is therefore the preferred first-line therapy, if possible. The management of unresectable UCD is more challenging. Existing evidence supports that asymptomatic unresectable UCD may be observed. The anti-interleukin-6 monoclonal antibody siltuximab should be considered for unresectable UCD patients with an inflammatory syndrome. Unresectable UCD that is symptomatic as a result of compression of vital neighboring structures may be rendered amenable to resection by medical therapy (eg, rituximab, steroids), radiotherapy, or embolization. Further research is needed in UCD patients with persisting constitutional symptoms despite complete excision and normal laboratory markers. We hope that these guidelines will improve outcomes in UCD and help treating physicians decide the best therapeutic approach for their patients

    Mechanisms of Natural Killer Cell Activation to Viral Infection

    No full text
    <p>Natural killer (NK) cells are lymphocytes of the innate immune response with well-demonstrated activities against viral infections and tumors. Because of these abilities, we sought to glean insights into the mechanisms of NK cell activation so that they may be applied toward the design of new therapies.</p><p>NK cells are particularly critical for the control of poxviral infections. Vaccinia virus (VV) is the most-studied member of the poxviral family. It is robustly immunogenic and functions as the live vaccine responsible for the successful elimination of smallpox. VV infection provides a useful model for studying NK cell activation: NK cells play an important role in its clearance and the virus efficiently activates NK cells and recruits them to the site of infection. We had previously used this model to identify Toll-like receptor (TLR)-dependent and -independent mechanisms of NK cell activation to VV. One method of TLR-independent activation to VV requires the activation receptor NKG2D, which recognizes host ligands expressed upon viral infection by accessory cells such as dendritic cells (DCs) and macrophages.</p><p>In the first aim of this thesis, we sought to determine how the ligands for the NKG2D activation receptor become upregulated in the context of VV infection. Specifically, we asked whether interleukin-18 (IL-18), known to play a role in the innate immune response, could boost the expression of NKG2D ligands on DCs in response to viral infection. Using an in vivo infection model with IL-18R-deficient mice, our results confirmed an important role for IL-18 in NK cell activation to VV and viral control. We then made use of an NK-DC co-culture to show that IL-18 signaling on DCs, in addition to NK cells, is necessary to achieve efficient NK cell activation to viral infection. We further demonstrated in a cell-transfer experiment that cell-extrinsic IL-18 signaling is critical for NK cell activation in vivo. DC ablation via a mouse model designed to specifically ablate CD11c+ cells showed that DCs are also required for NK cell activation to VV in vivo. We finally showed how IL-18 can act on DCs in vivo and in vitro to boost the expression of Rae-1, an NKG2D ligand. Collectively, our data uncover a novel mechanism whereby NK cells become activated by IL-18 control of NKG2D ligand expression on DCs.</p><p>In the second aim of this project, we detailed how IL-18 signaling results in the upregulation of the NKG2D ligand Rae-1. Using an in vitro macrophage model, we showed how recombinant IL-18 was sufficient to upregulate Rae-1 expression. We compared IL-18 control of Rae-1 expression to LPS, a TLR ligand that also signals through the common adaptor MyD88 to govern Rae-1 expression. Using chemical inhibitors to cell signaling molecules, we then identified the importance of MyD88 signaling through PI3K. We then revealed that glycogen synthase kinase 3 (GSK-3) can act as a negative regulator of Rae-1 expression downstream of IL-18/TLR signaling. Specifically, we have shown that during inflammatory signaling, PI3K (acting downstream of MyD88) can inhibit GSK-3 to relieve its tonic suppression of Rae-1 expression and upregulate the NKG2D ligand. Finally, we showed that PI3K and GSK-3 signaling are also important to Rae-1 expression on DCs - the accessory cell where IL-18 signals to control Rae-1 expression to boost NK cell activation against VV.</p><p>In its entirety, this work seeks to address how NK cells become activated in the context of VV infection in order to identify new ways NK cells may be harnessed therapeutically.</p>Dissertatio

    Natural Killer Cell Responses to Viral Infection

    No full text
    Natural killer (NK) cells, as part of the innate immune system, play a key role in host defense against viral infections. Recent advances have indicated that NK cell activation and function are regulated by the interplay between inhibitory and activating signals. Thus, a better understanding of mechanisms responsible for NK cell activation and function in the control of viral infections will help develop NK cell-based therapies. In this review, we will first discuss how NK cells are activated in response to viral infections. We will then focus on the recruitment of activated NK cells to the site of infection as well as on NK cell effector mechanisms against virally infected cells
    corecore