13 research outputs found

    Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire

    Get PDF
    Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests

    Changes in evapotranspiration, transpiration and evaporation across natural and managed landscapes in the Amazon, Cerrado and Pantanal biomes

    Get PDF
    Land-use and land-cover change (LULCC) can dramatically affect the magnitude, seasonality and main drivers of evaporation (E) and transpiration (T), together as evapotranspiration (ET), with effects on overall ecosystem function, as well as both the hydrological cycle and climate system at multiple scales. Our understanding of tropical ecosystem responses to LULCC and global change processes is still limited, mainly due to a lack of ground-based observations that cover a variety of ecosystems, land-uses and land-covers. In this study, we used a network of nine eddy covariance flux towers installed in natural (forest, savanna, wetland) and managed systems (rainfed and irrigated cropland, pastureland) to explore how LULCC affects ET and its components in the Amazon, Cerrado and Pantanal biomes. At each site, tower-based ET measurements were partitioned into T and E to investigate how these fluxes varied between different land-uses and seasons. We found that ET, T and E decreased significantly during the dry season, except in Amazon forest ecosystems where T rates were maintained throughout the year. In contrast to Amazon forests, Cerrado and Pantanal ecosystems showed stronger stomatal control during the dry season. Cropland and pasture sites had lower ET and T compared to native vegetation in all biomes, but E was greater in Pantanal pasture when compared to Pantanal forest. The T fraction of ET was correlated with LAI and EVI, but relationships were weaker in Amazon forests. Our results highlight the importance of understanding the effects of LULCC on water fluxes in tropical ecosystems, and the implications for climate change mitigation policies and land management

    Amazonian forest degradation must be incorporated into the COP26 agenda

    Get PDF
    Nations will reaffirm their commitment to reducing greenhouse gas (GHG) emissions during the 26th United Nations Climate Change Conference (COP26; www.ukcop26.org), in Glasgow, Scotland, in November 2021. Revision of the national commitments will play a key role in defining the future of Earth’s climate. In past conferences, the main target of Amazonian nations was to reduce emissions resulting from land-use change and land management by committing to decrease deforestation rates, a well-known and efficient strategy1,2. However, human-induced forest degradation caused by fires, selective logging, and edge effects can also result in large carbon dioxide (CO2) emissions1,2,3,4,5, which are not yet explicitly reported by Amazonian countries. Despite its considerable impact, forest degradation has been largely overlooked in previous policy discussions5. It is vital that forest degradation is considered in the upcoming COP26 discussions and incorporated into future commitments to reduce GHG emissions

    Flow cytometry to estimate circulating hematopoietic progenitors for autologous transplantation: comparative analysis of different CD34 monoclonal antibodies

    No full text
    We report that the 2 fluorescein (FITC) conjugated CD34 monoclonal antibodies available to date, namely FITC-8G12 and FITC-QBEND10, exhibit different capabilities of detecting circulating hematopoietic progenitors (CHP) as cells expressing the CD34 antigen (CD34+) by direct immunofluorescence flow cytometry. Mean fluorescence intensity conferred by FITC-QBEND10 to CD34+ CHP is 2.8-4.3 times lower than that conferred by FITC-8G12. By indirect immunofluorescence, native unconjugated QBEND10 and 8G12 antibodies detect CD34+ CHP in a comparable manner, thus indicating that the decrease in QBEND10 affinity is due to FITC-conjugation. Utilization of FITC-QBEND10 instead of FICT-8G12 to estimate infrequent (usually less than or equal to 5%) CD34+ CHP for clinical decision-making in autologous transplantation of CHP exposes clinicians to the risk of either overestimating (false positive) or underestimating (false negative) these cells in peripheral blood. Recently published guidelines for large-scale collection of CHP for autologous transplantation in cancer patients were based on data obtained with FITC-8G12. The same guidelines cannot be considered valid if FITC-QBEND10 is employed. We recommend FITC-8G12 as the optimal reagent to date for standardizing results of autologous CHP transplantation in cancer therapy

    Can we avert an Amazon tipping point? The economic and environmental costs

    No full text
    © 2022 The Author(s). Published by IOP Publishing Ltd.The Amazon biome is being pushed by unsustainable economic drivers towards an ecological tipping point where restoration to its previous state may no longer be possible. This degradation is the result of self-reinforcing interactions between deforestation, climate change and fire. We assess the economic, natural capital and ecosystem services impacts and trade-offs of scenarios representing movement towards an Amazon tipping point and strategies to avert one using the Integrated Economic-Environmental Modeling (IEEM) Platform linked with spatial land use-land cover change and ecosystem services modeling (IEEM + ESM). Our approach provides the first approximation of the economic, natural capital and ecosystem services impacts of a tipping point, and evidence to build the economic case for strategies to avert it. For the five Amazon focal countries, namely, Brazil, Peru, Colombia, Bolivia and Ecuador, we find that a tipping point would create economic losses of US256.6billionincumulativegrossdomesticproductby2050.Policiesthatwouldcontributetoavertingatippingpoint,includingstronglyreducingdeforestation,investinginintensifyingagricultureinclearedlands,climateadaptedagricultureandimprovingfiremanagement,wouldgenerateapproximatelyUS256.6 billion in cumulative gross domestic product by 2050. Policies that would contribute to averting a tipping point, including strongly reducing deforestation, investing in intensifying agriculture in cleared lands, climate-adapted agriculture and improving fire management, would generate approximately US339.3 billion in additional wealth and a return on investment of US$29.5 billion. Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent and replicable manner can support the design of regional development strategies for the Amazon biome, build the business case for action and catalyze global cooperation and financing to enable policy implementation

    How deregulation, drought and increasing fire impact Amazonian biodiversity

    No full text
    Biodiversity contributes to the ecological and climatic stability of the Amazon Basin, but is increasingly threatened by deforestation and fire. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079–189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3–85.2% of species that are listed as threatened in this region. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253–10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon
    corecore