1,757 research outputs found
Atmospheric refractivity effects on mid-infrared ELT adaptive optics
We discuss the effect of atmospheric dispersion on the performance of a
mid-infrared adaptive optics assisted instrument on an extremely large
telescope (ELT). Dispersion and atmospheric chromaticity is generally
considered to be negligible in this wavelength regime. It is shown here,
however, that with the much-reduced diffraction limit size on an ELT and the
need for diffraction-limited performance, refractivity phenomena should be
carefully considered in the design and operation of such an instrument. We
include an overview of the theory of refractivity, and the influence of
infrared resonances caused by the presence of water vapour and other
constituents in the atmosphere. `Traditional' atmospheric dispersion is likely
to cause a loss of Strehl only at the shortest wavelengths (L-band). A more
likely source of error is the difference in wavelengths at which the wavefront
is sensed and corrected, leading to pointing offsets between wavefront sensor
and science instrument that evolve with time over a long exposure. Infrared
radiation is also subject to additional turbulence caused by the presence of
water vapour in the atmosphere not seen by visible wavefront sensors, whose
effect is poorly understood. We make use of information obtained at radio
wavelengths to make a first-order estimate of its effect on the performance of
a mid-IR ground-based instrument. The calculations in this paper are performed
using parameters from two different sites, one `standard good site' and one
`high and dry site' to illustrate the importance of the choice of site for an
ELT.Comment: 11 pages, to be published in SPIE Proceedings vol. 7015, Adaptive
Optics Systems, eds. N. Hubin, C.E. Max and P.L. Wizinowich, 200
PAH Strength and the Interstellar Radiation Field around the Massive Young Cluster NGC3603
We present spatial distribution of polycyclic aromatic hydrocarbons and
ionized gas within the Galactic giant HII region NGC3603. Using the IRS
instrument on board the Spitzer Space Telescope, we study in particular the PAH
emission features at ~5.7, 6.2, 7.7, 8.6, and 11.3um, and the [ArII] 6.99um,
[NeII] 12.81um, [ArIII] 8.99um, and [SIV] 10.51um forbidden emission lines. The
observations probe both ionized regions and photodissociation regions. Silicate
emission is detected close to the central cluster while silicate absorption is
seen further away. We find no significant variation of the PAH ionization
fraction across the whole region. The emission of very small grains lies closer
to the central stellar cluster than emission of PAHs. The PAH/VSG ratio
anticorrelates with the hardness of the interstellar radiation field suggesting
a destruction mechanism of the molecules within the ionized gas, as shown for
low-metallicity galaxies by Madden et al. (2006).Comment: Accepted for publication in ApJ. Corrected typo
Mid-Infrared Instrumentation for the European Extremely Large Telescope
MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European
Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to
at least 20 microns. Designed for diffraction-limited performance over the
entire wavelength range, MIDIR will require an adaptive optics system; a
cryogenically cooled system could offer optimal performance in the IR, and this
is a critical aspect of the instrument design. We present here an overview of
the project, including a discussion of MIDIR's science goals and a comparison
with other infrared (IR) facilities planned in the next decade; top level
requirements derived from these goals are outlined. We describe the optical and
mechanical design work carried out in the context of a conceptual design study,
and discuss some important issues to emerge from this work, related to the
design, operation and calibration of the instrument. The impact of telescope
optical design choices on the requirements for the MIDIR instrument is
demonstrated.Comment: for publication in SPIE Proceedings vol. 6692, Cryogenic Optical
Systems and Instrumentation XII, eds. J.B. Heaney and L.G. Burriesci, San
Diego, Aug 200
Elemental Abundances of Blue Compact Dwarfs from mid-IR Spectroscopy with Spitzer
We present a study of elemental abundances in a sample of thirteen Blue
Compact Dwarf (BCD) galaxies, using the 10--37m high resolution
spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur
for our sample using the infrared fine-structure lines probing regions which
may be obscured by dust in the optical and compare our results with similar
infrared studies of starburst galaxies from ISO. We find a good correlation
between the neon and sulfur abundances, though sulfur is under-abundant
relative to neon with respect to the solar value. A comparison of the elemental
abundances (neon, sulfur) measured from the infrared data with those derived
from the optical (neon, sulfur, oxygen) studies reveals a good overall
agreement for sulfur, while the infrared derived neon abundances are slightly
higher than the optical values. This indicates that either the metallicities of
dust enshrouded regions in BCDs are similar to the optically accessible
regions, or that if they are different they do not contribute substantially to
the total infrared emission of the host galaxy.Comment: 11 pages, 6 figures, accepted by Ap
Wavelength calibration of the JWST-MIRI medium resolution spectrometer
We present the wavelength and spectral resolution characterisation of the
Integral Field Unit (IFU) Medium Resolution Spectrometer for the Mid-InfraRed
Instrument (MIRI), to fly onboard the James Webb Space Telescope in 2014. We
use data collected using the Verification Model of the instrument and develop
an empirical method to calibrate properties such as wavelength range and
resolving power in a portion of the spectrometer's full spectral range (5-28
microns). We test our results against optical models to verify the system
requirements and combine them with a study of the fringing pattern in the
instrument's detector to provide a more accurate calibration. We show that
MIRI's IFU spectrometer will be able to produce spectra with a resolving power
above R=2800 in the wavelength range 6.46-7.70 microns, and that the unresolved
spectral lines are well fitted by a Gaussian profile.Comment: 12 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes
and Instrumentation 2010: Optical, Infrared, and Millimeter Wav
Near-Infrared, Adaptive Optics Observations of the T Tauri Multiple-Star System
With high-angular-resolution, near-infrared observations of the young stellar
object T Tauri at the end of 2002, we show that, contrary to previous reports,
none of the three infrared components of T Tau coincide with the compact radio
source that has apparently been ejected recently from the system (Loinard,
Rodriguez, and Rodriguez 2003). The compact radio source and one of the three
infrared objects, T Tau Sb, have distinct paths that depart from orbital or
uniform motion between 1997 and 2000, perhaps indicating that their interaction
led to the ejection of the radio source. The path that T Tau Sb took between
1997 and 2003 may indicate that this star is still bound to the presumably more
massive southern component, T Tau Sa. The radio source is absent from our
near-infrared images and must therefore be fainter than K = 10.2 (if located
within 100 mas of T Tau Sb, as the radio data would imply), still consistent
with an identity as a low-mass star or substellar object.Comment: 11 pages, 3 figures, submitted to ApJ
Companion detection limits with adaptive optics coronagraphy
We presented a detailed observational study of the capabilities of the Palomar Adaptive Optics System and the PHARO near infrared camera in coronagraphic mode. The camera provides two different focal plane occulting masks consisting of completely opaque circular disks of diameter 0.433 arcsec and 0.965 arcsec, both within the cryogenic dewar. In addition, three different pupil plane apodizing masks (a.k.a. Lyot masks) are provided which downsize the beam. The six different combinations of Lyot mask and focal plane mask provide for different levels of suppression of the point spread function of a bright star centered on the focal plane mask. We obtained images of the bright nearby star Gliese 614 with all six different configurations in the K-band filter. Herein, we provide an analysis of the dynamic range achievable with these configurations. The dynamic range (the ratio of the primary star intensity to the intensity of the faintest point source detectable in the images) is a complicated function of not only the angular separation of the primary star and companion, but also of the azimuthal angle because of the complex point spread function of the primary star, which is also wavelength dependent. However, beyond 2.5 arcseconds from the star, regardless of the wavelength of the observation, the detection limit of a companion is simply the limiting magnitude of the image, as determined by the sensitivity of the PHARO camera. Within that radius, the dynamic range is at least 8 magnitudes at the 5(sigma) level and as high as 12 in a one second exposure. This represents a substantial gain over similar techniques without adaptive optics, which are generally limited to radii beyond two arcsec. We provide a quantitative discussion and recommendation for the optimal configuration along with a detailed comparison with recent theoretical predictions of AO coronagraphic performance
Studies of Herbig-Haro objects with the Palomar adaptive optics system
Herbig-Haro objects are bright optical emission-line sources associated with tightly collimated jets ejected from pre-main- sequence stars. Only a few hundred are known. In optical images, they appear to be dense knots of material at the outer ends of the jets, and often exhibit streaming wake morphologies suggestive of bow shocks. Their optical spectra show characteristics of high-velocity shocks, with line-widths typically 100 km/s. HH objects often occur in pairs consistent with the bipolar morphology of outflows from YSOs; when radio maps of NH3 are made, high-density central regions consistent with collimating disks are seen. HH objects also often appear in a series along a jet, presumably where the jet undergoes a particularly energetic interaction with the ambient medium. Adaptively-corrected near-infrared studies of HH objects can reveal much about their workings at fine spatial scales. Narrow-band NIR filters sensitive to transitions of molecular hydrogen and other selected species are excellent tracers of shock excitation, and many HH objects have been observed to show complex structure in these lines down to the arc second level. By pushing to higher spatial resolution with adaptive optics, much more detailed information about the nature of the shock fronts may be obtained. In this paper we describe our first observations of HH objects with the AO system on the Palomar 200-inch telescope
- …