4,710 research outputs found
Turbulent dynamo with advective magnetic helicity flux
Many astrophysical bodies harbor magnetic fields that are thought to be
sustained by a dynamo process. However, it has been argued that the production
of large-scale magnetic fields by mean-field dynamo action is strongly
suppressed at large magnetic Reynolds numbers owing to the conservation of
magnetic helicity. This phenomenon is known as {\it catastrophic quenching}.
Advection of magnetic fields by stellar and galactic winds toward the outer
boundaries and away from the dynamo is expected to alleviate such quenching.
Here we explore the relative roles played by advective and turbulent--diffusive
fluxes of magnetic helicity in the dynamo. In particular, we study how the
dynamo is affected by advection. We do this by performing direct numerical
simulations of a turbulent dynamo of type driven by forced
turbulence in a Cartesian domain in the presence of a flow away from the
equator where helicity changes sign. Our results indicate that in the presence
of advection, the dynamo, otherwise stationary, becomes oscillatory. We confirm
an earlier result for turbulent--diffusive magnetic helicity fluxes that for
small magnetic Reynolds numbers (\Rm\lesssim 100...200, based on the
wavenumber of the energy-carrying eddies) the magnetic helicity flux scales
less strongly with magnetic Reynolds number (\Rm^{-1/2}) than the term
describing magnetic helicity destruction by resistivity (\Rm^{-1}). Our new
results now suggest that for larger \Rm the former becomes approximately
independent of \Rm, while the latter falls off more slowly. We show for the
first time that both for weak and stronger winds, the magnetic helicity flux
term becomes comparable to the resistive term for \Rm\gtrsim 1000, which is
necessary for alleviating catastrophic quenching.Comment: 9 pages, 9 figures, accepted for publication in MNRA
Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model
Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large
scale field growth to total magnetic helicity evolution best predict the
saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2"
LSDs in periodic boxes, the electromotive force driving LSD growth depends on
the difference between the time-integrated kinetic and current helicity
associated with fluctuations. When the system is helically kinetically forced
(KF), the growth of the large scale helical field is accompanied by growth of
small scale magnetic (and current) helicity which ultimately quench the LSD.
Here, using both simulations and theory, we study the complementary
magnetically forced(MF) case in which the system is forced with an electric
field that supplies magnetic helicity. For this MF case, the kinetic helicity
becomes the back-reactor that saturates the LSD. Simulations of both MF and KF
cases can be approximately modeled with the same equations of magnetic helicity
evolution, but with complementary initial conditions. A key difference between
KF and MF cases is that the helical large scale field in the MF case grows with
the same sign of injected magnetic helicity, whereas the large and small scale
magnetic helicities grow with opposite sign for the KF case. The MF case can
arise even when the thermal pressure is approximately smaller than the magnetic
pressure, and requires only that helical small scale magnetic fluctuations
dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in
accretion discs and Babcock models of the solar dynamo are actually MF LSDs.Comment: 12 pages, 34 figure
Spin properties of top quark pairs produced at hadron colliders
We discuss the spin properties of top quark pairs produced at hadron
colliders at next-to-leading order in the coupling constant alpha_s of the
strong interaction. Specifically we present, for some decay channels, results
for differential angular distributions that are sensitive to t tbar spin
correlations.Comment: Invited talk given by A. Brandenburg at the Cracow epiphany
conference on heavy flavours, 3 - 6 January 2003, Cracow, Polan
Magnetic helicity fluxes in interface and flux transport dynamos
Dynamos in the Sun and other bodies tend to produce magnetic fields that
possess magnetic helicity of opposite sign at large and small scales,
respectively. The build-up of magnetic helicity at small scales provides an
important saturation mechanism. In order to understand the nature of the solar
dynamo we need to understand the details of the saturation mechanism in
spherical geometry. In particular, we want to understand the effects of
magnetic helicity fluxes from turbulence and meridional circulation. We
consider a model with just radial shear confined to a thin layer (tachocline)
at the bottom of the convection zone. The kinetic alpha owing to helical
turbulence is assumed to be localized in a region above the convection zone.
The dynamical quenching formalism is used to describe the build-up of mean
magnetic helicity in the model, which results in a magnetic alpha effect that
feeds back on the kinetic alpha effect. In some cases we compare with results
obtained using a simple algebraic alpha quenching formula. In agreement with
earlier findings, the magnetic alpha effect in the dynamical alpha quenching
formalism has the opposite sign compared with the kinetic alpha effect and
leads to a catastrophic decrease of the saturation field strength with
increasing magnetic Reynolds numbers. However, at high latitudes this quenching
effect can lead to secondary dynamo waves that propagate poleward due to the
opposite sign of alpha. Magnetic helicity fluxes both from turbulent mixing and
from meridional circulation alleviate catastrophic quenching.Comment: 9 pages, 14 figures, submitted to A &
- …