4,337 research outputs found
Tolerance After Liver Transplantation: Where Are We?
info:eu-repo/semantics/publishedVersio
Flavour Physics and CP Violation in the Standard Model and Beyond
We present the invited lectures given at the Third IDPASC School which took
place in Santiago de Compostela in January 2013. The students attending the
school had very different backgrounds, some of them were doing their Ph.D. in
experimental particle physics, others in theory. As a result, and in order to
make the lectures useful for most of the students, we focused on basic topics
of broad interest, avoiding the more technical aspects of Flavour Physics and
CP Violation. We make a brief review of the Standard Model, paying special
attention to the generation of fermion masses and mixing, as well as to CP
violation. We describe some of the simplest extensions of the SM, emphasising
novel flavour aspects which arise in their framework.Comment: Invited talk at the Third IDPASC School 2013, January 21st - February
2nd 2013, Santiago de Compostela, Galiza, Spain; 36 pages, 8 figures, 2
tables; version with few misprints correcte
Area Quantization in Quasi-Extreme Black Holes
We consider quasi-extreme Kerr and quasi-extreme Schwarzschild-de Sitter
black holes. From the known analytical expressions obtained for their
quasi-normal modes frequencies, we suggest an area quantization prescription
for those objects.Comment: Final version to appear in Mod. Phys. Lett.
The D0 same-charge dimuon asymmetry and possibile new CP violation sources in the system
Recently, the D0 collaboration reported a large CP violation in the same-sign
dimuon charge asymmetry which has the deviation from the value
estimated in the Standard Model. In this paper, several new physics models are
considered: the MSSM, two Higgs doublet model, the recent dodeca model, and a
new model. Generally, it is hard to achieve such a large CP violation
consistently with other experimental constraints. We find that a scheme with
extra non-anomalous U(1) gauge symmetry is barely consistent. In general,
the extra gauge boson induces the flavor changing neutral current
interactions at tree level, which is the basic reason allowing a large new
physics CP violation. To preserve the U(1) symmetry at high energy,
SU(2) singlet exotic heavy quarks of mass above 1 TeV and the Standard
Model gauge singlet scalars are introduced.Comment: 12 pages, 13 figure
Basis invariant conditions for supersymmetry in the two-Higgs-doublet model
The minimal supersymmetric standard model involves a rather restrictive Higgs
potential with two Higgs fields. Recently, the full set of classes of
symmetries allowed in the most general two Higgs doublet model was identified;
these classes do not include the supersymmetric limit as a particular class.
Thus, a physically meaningful definition of the supersymmetric limit must
involve the interaction of the Higgs sector with other sectors of the theory.
Here we show how one can construct basis invariant probes of supersymmetry
involving both the Higgs sector and the gaugino-higgsino Higgs interactions.Comment: RevTex, 11 pages, v2-small section adde
Mean-field calculation of critical parameters and log-periodic characterization of an aperiodic-modulated model
We employ a mean-field approximation to study the Ising model with aperiodic
modulation of its interactions in one spatial direction. Two different values
for the exchange constant, and , are present, according to the
Fibonacci sequence. We calculated the pseudo-critical temperatures for finite
systems and extrapolate them to the thermodynamic limit. We explicitly obtain
the exponents , , and and, from the usual scaling
relations for anisotropic models at the upper critical dimension (assumed to be
4 for the model we treat), we calculate , , , ,
and . Within the framework of a renormalization-group approach, the
Fibonacci sequence is a marginal one and we obtain exponents which depend on
the ratio , as expected. But the scaling relation is obeyed for all values of we studied. We characterize
some thermodynamic functions as log-periodic functions of their arguments, as
expected for aperiodic-modulated models, and obtain precise values for the
exponents from this characterization.Comment: 17 pages, including 9 figures, to appear in Phys. Rev.
Numerical simulation study of the dynamical behavior of the Niedermayer algorithm
We calculate the dynamic critical exponent for the Niedermayer algorithm
applied to the two-dimensional Ising and XY models, for various values of the
free parameter . For we regain the Metropolis algorithm and for
we regain the Wolff algorithm. For , we show that the mean
size of the clusters of (possibly) turned spins initially grows with the linear
size of the lattice, , but eventually saturates at a given lattice size
, which depends on . For , the Niedermayer
algorithm is equivalent to the Metropolis one, i.e, they have the same dynamic
exponent. For , the autocorrelation time is always greater than for
(Wolff) and, more important, it also grows faster than a power of .
Therefore, we show that the best choice of cluster algorithm is the Wolff one,
when compared to the Nierdermayer generalization. We also obtain the dynamic
behavior of the Wolff algorithm: although not conclusive, we propose a scaling
law for the dependence of the autocorrelation time on .Comment: Accepted for publication in Journal of Statistical Mechanics: Theory
and Experimen
- …