30 research outputs found

    Re-Inspection of Small RNA Sequence Datasets Reveals Several Novel Human miRNA Genes

    Get PDF
    BACKGROUND: miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology. METHODOLOGY/PRINCIPAL FINDINGS: Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise. CONCLUSIONS/SIGNIFICANCE: Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing

    In vivo screening of modified siRNAs for non-specific antiviral effect in a small fish model: number and localization in the strands are important

    Get PDF
    Small interfering RNAs (siRNAs) are promising new active compounds in gene medicine but the induction of non-specific immune responses following their delivery continues to be a serious problem. With the purpose of avoiding such effects chemically modified siRNAs are tested in screening assay but often only examining the expression of specific immunologically relevant genes in selected cell populations typically blood cells from treated animals or humans. Assays using a relevant physiological state in biological models as read-out are not common. Here we use a fish model where the innate antiviral effect of siRNAs is functionally monitored as reduced mortality in challenge studies involving an interferon sensitive virus. Modifications with locked nucleic acid (LNA), altritol nucleic acid (ANA) and hexitol nucleic acid (HNA) reduced the antiviral protection in this model indicative of altered immunogenicity. For LNA modified siRNAs, the number and localization of modifications in the single strands was found to be important and a correlation between antiviral protection and the thermal stability of siRNAs was found. The previously published sisiRNA will in some sequences, but not all, increase the antiviral effect of siRNAs. The applied fish model represents a potent tool for conducting fast but statistically and scientifically relevant evaluations of chemically optimized siRNAs with respect to non-specific antiviral effects in vivo

    The proto-oncogene TWIST1 is regulated by microRNAs.

    Get PDF
    Upregulation of the proto-oncogene Twist1 is highly correlated with acquired drug resistance and poor prognosis in human cancers. Altered expression of this multifunctional transcription factor is also associated with inherited skeletal malformations. The mammalian Twist1 3'UTRs are highly conserved and contain a number of potential regulatory elements including miRNA target sites. We analyzed the translational regulation of TWIST1 using luciferase reporter assays in a variety of cell lines. Among several miRNAs tested, miR-145a-5p, miR-151-5p and a combination of miR-145a-5p + miR-151-5p and miR-151-5p + miR-337-3p were able to significantly repress Twist1 translation. This phenomena was confirmed with both exogenous and endogenous miRNAs and was dependent on the presence of the predicted target sites in the 3'UTR. Furthermore, the repression was sensitive to LNA-modified miRNA antagonists and resulted in decreased migratory potential of murine embryonic fibroblast cells. Understanding the in vivo mechanisms of this oncogene's regulation might open up a possibility for therapeutic interference by gene specific cancer therapies

    Functional selection of shRNA loops from randomized retroviral libraries.

    Get PDF
    Gene silencing by RNA interference (RNAi) can be achieved by the ectopic expression of tailored short hairpin RNAs (shRNAs) which after export to the cytoplasm are processed by Dicer and incorporated into the RNA induced silencing complex (RISC). Design rules for shRNAs have been the focus of several studies, but only a few reports have turned the attention to the sequence of the loop-region. In this work we selected high-functional and low-functional shRNA loops from retroviral hairpin-loop-libraries in an RNAi reporter assay. The procedure revealed a very significant and stem sequence-dependent effect of the loop on shRNA function and although neither strong consensus loop sequence nor structural motifs could be identified, a preferred loop sequence (5'-UGUGCUU-3') was found to support robust knock down with little stem sequence dependency. These findings will serve as a guide for designing shRNAs with improved knock down capacity

    MicroRNAs 151-5p and 337-3p reduce the mobility of murine embryonic fibroblast cells.

    No full text
    <p>Dot-plot superposed with the box-plot of the predicted probabilities of cell migration for observations from miR-151-5p + miR-337-3p (red) and scrambled control (blue) treated cells (<i>p</i>-value 0.000135). Note the presence of miR-151-5p + miR-337-3p treated cells with extreme low estimates of probability of cell migration.</p
    corecore